

Overflows & Format Strings

Announcements...

Computer Science 161 Fall 2019

- Homework 1 due in ~1 week

* Project 1 release Real Soon Now:

e Practical exploitation of vulnerable SUID programs running in a VM
Have you done Project 07

Internet of Shit...

- A device produced by the lowest bidder...

e That you then connect through the network

- This has a very wide attack surface
* Methods where an attacker might access a vulnerability

- And its often incredibly cost sensitive

« \ery little support after purchase
So things don't get patched
* No way for the user to tell what is "secure" or "not"

But they can tell what is cheaper!

And often it is insanely insecure:
Default passwords on telnet of admin/admin...
Trivial buffer overflows

Net Of A Million Spies...

Computer Science 161 Fall 2019

 Device only communicates through a central service
« Greatly reduces the attack surface but...

- Most of the companies running the service are "Data Asset"”
companies

* Make their money from advertising, not the product themselves
May actually subsidize the product considerably

« Some you know about: Google, Amazon

e Some you may not: Salesforce

« Only exception of note is Apple:

* | may talk about HomeK:it later...
But you still have to trust that the HomeKit product doesn't report to a third party.

Computer Science 161 Fall 2 ; : Weaver

Computer Science 161 Fallg2Qd9

‘ Traveler Information

Traveler 1 - Adults (age 18 to 64)

To comply with the TSA Secure Flight program, the traveler information listed here must exactly match the
information on the government-issued photo ID that the traveler presents at the airport.

Title (optional): First Name: Middle Name: Last Name:
' Dr. ﬁq Alice Smith

. . Travelers are required to enter a middle name/Initial If one Is
Gender: Date of Birth: listed on thelr government-Issued photo 1D.

| Female i+ 01/24/93

Some younger travelers are not required to present an ID
when traveling within the U.S. Learn more

+ Known Traveler Number/Pass ID (optional): Ird

+ Redress Number (optional): 2l

Seat Request:
@ No Preference () Aisle () Window

Weaver

Computer Science 161 Fall 2019

Computer Science 161 Fall 2019

Computer Science 161 Fall 2019

Weaver

Traveler Information

Traveler 1 - Adults (age 18 to 64)

To comply with the TSA Secure Flight program, the traveler information listed here must exactly match the
information on the government-issued photo ID that the traveler presents at the airport.

Title (optional): First Name: Middle Name: Last Name:

| Dr. “+]Alice Smithhhhhhhhhhhhh
. . Travelers are required to enter a middle name/Initial If one Is

Gender: Date of Birth: listed on thelr government-Issued photo 1D.

| Female 4] 01/24/93
Some younger travelers are not required to present an ID
when travellng within the U.S. Learn more

+ Known Traveler Number/Pass ID (optional): 2]

+ Redress Number (optional): Ird

Seat Request: 10
® No Preference () Aisle () Window

Computer Science 161 Fall 2019

How could Alice exploit this?
Find a partner and talk it through.

Computer Science 161 Fall 2019

Weaver

Seat Request:
@ N Prafaranca () Aicla M) Windnw

Traveler Information

Traveler 1 - Adults (age 18 to 64)

To comply with the TSA Secure Flight program, the traveler information listed here must exactly match the
information on the government-issued photo ID that the traveler presents at the airport.

Title (optional): First Name: Middle Name: Last Name:
_Dr. ‘%] Alice Smith First
Gender: Date of Birth: Travelers are required to enter a middle name/Initial If one Is

listed on thelr government-issued photo ID.
| Female 4] 01/24/93

Some younger travelers are not required to present an ID
when travellng within the U.S. Learn more

+ Known Traveler Number/Pass ID (optional): 2]

+ Redress Number (optional): [2]

Computer Science 161 Fall 2019

Computer Science 161 Fall 2019

Passenger last name:
“NICHOLAS WEAVER FIRST SPECIAL INSTRUX: TREAT AS HUMAN.”

Computer Science 161 Fall 2019 Weaver

char name[20];
void wvulnerable () {

gets (name) ;

Computer Science 161 Fall 2019

char name[20];
char instrux[80] = "none";

void wvulnerable () {

gets (name) ;

Computer Science 161 Fall 2019

char name[20];
int seatinfirstclass = 0;

void wvulnerable () {

gets (name) ;

Computer Science 161 Fall 2019

char name[20];
int authenticated = 0;

void wvulnerable () {

gets (name) ;

Computer Science 161 Fall 2019

char line[512];

char command[] = "/usr/bin/finger";

void main () {
gets(line) ;

execv (command, ...);

}

Computer Science 161 Fall 2019

char name[20];
int (*fnptr) ()

void wvulnerable () {

gets (name) ;

20

Computer Science 161 Fall

Rank |Score ID Name

(1] [93.8 |cwE-89 zggttalp:jre?ggrt\filization of Special Elements used in an SQL Command
[2] 183.3 ICWE-78 li%[;r%%er;nltl‘:gg?:;:g?:n%f Special Elements used in an OS Command |
[3]1 [79.0 E-120 |Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
[4] ' 277 ICWE-79]i!ﬁg;:;:s-cesritl;le;ct;iltiiz:;:ic))n of Input During Web Page Generation '
[5]1 |76.9 |CWE-306 |Missing Authentication for Critical Function

[6] |76.8 |CWE-862 |Missing Authorization

[7] |75.0 |CWE-798 |Use of Hard-coded Credentials

[8] |75.0 |CWE-311 |Missing Encryption of Sensitive Data

[9] |74.0 |CWE-434 |Unrestricted Upload of File with Dangerous Type

[10] |73.8 |CWE-807 |Reliance on Untrusted Inputs in a Security Decision

[11] |73.1 |CWE-250 |Execution with Unnecessary Privileges

[12] (70.1 |[CWE-352 |Cross-Site Request Forgery (CSRF)

[13] |69.3 |cwe-22 ITr:;;zlr;)r;;;)Limitation of a Pathname to a Restricted Directory ('Path
[14] |68.5 |CWE-494 |Download of Code Without Integrity Check

[15] |67.8 |CWE-863 |Incorrect Authorization

[16] (66.0 |[CWE-829 |Inclusion of Functionality from Untrusted Control Sphere

21

Computer Science 161 Fall 2019

void wvulnerable () {
char buf[64];

gets (buf) ;

22

Computer Science 161 Fall 2019

void still wvulnerable?() ({
char *buf = malloc(64) ;

gets (buf) ;

23

IE's Role in the Google-China War

By Richard Adhikari
TechNewsWorld
01/15/10 12:25 PM PT

The hack attack on Google that set off the company's

ongoing standoff with China appears to have come

through a zero-day flaw in Microsoft's Internet Explorer |GG 2
browser. Microsoft has released a security advisory, and

researchers are hard at work studying the exploit. The attack appears to consist

of several files, each a different piece of malware.

Computer Science 161 Fall 2019

Computer security companies are scurrying to cope with the fallout from the Internet
Explorer (IE) flaw that led to cyberattacks on Google (Nasdaq: GOOG) and its corporate
and individual customers.

The zero-day attack that exploited IE is part of a lethal cocktail of malware that is keeping
researchers very busy.

"We're discovering things on an up-to-the-minute basis, and we've seen about a dozen
files dropped on infected PCs so far," Dmitri Alperovitch, vice president of research at
McAfee Labs, told TechNewsWorld.

The attacks on Google, which appeared to originate in China, have sparked a feud
between the Internet giant and the nation's government over censorship, and it could
result in Google pulling away from its business dealings in the country.

Pointing to the Flaw

e vulnerability in IE is an invalid pointer reference, Microsoft (Nasdaq: MSFT) said In
security advisory 979352, which it issued on Thursday. Under certain conditions, the

invalid pointer can be accessed after an object is deleted, the advisory states. In spegi
crafted attacks, : rs, IE can allow

remote execution of code when the flaw is exploited. 24

Disclaimer: x86-32

 For this class, we are going to use 32b x86...
 Why?

* |t is both common and weak...

« Almost everyone in this class has access to an x86 system:
Mac, Linux, Windows...
And can run a 32b x86 virtual machine

e 64b x86 systems generally include a lot better "mitigations”:
System defenses designed to limit exploitation in this manner

- But these attacks do apply to other microarchitectures

* Phones are 64b ARM: Can still be exploited in this manner

e The Internet of Things is mostly 32b or 64b ARM...

and often neglects to include the mitigations!
25

x86 vs RISC-V

- All RISC architectures are the same except for one or two ‘seems like
a good idea at the time’ design decisions
... But x86 is a very different beast from a programing viewpoint

- RISC-V: 32 general purpose registers (well, 31 + x0...)

* All operations are on data in registers apart from loads & stores

- x86: only a few registers

* Operations can be directly on data in memory, including a large number relative to the
stack

* EG, add takes two operands, adds them together, and stores the result in the first

The first can be a register or memory location

The second can be a register, a memory location, or an immediate...

But the first and second can’t both be a memory location?!?
26

The main x86 registers...

Computer Science 161 Fall 2019

- General purpose: EAX-EDX

* What you use for computing and other stuff, sorta...

* |ndexes & Pointers

 EBP: “Frame pointer”: points to the start of the current call frame on the
stack
« ESP: “Stack pointer”: points to the current stack

PUSH and POP

Decrement the stack pointer and store something there
Load something and increment the stack pointer

Most operations are done with data on the stack...

27

Linux (32-bit) process memory layout

Computer Science 161 Fall 2019 Weaver

OxXFFFFFFFF

Reserved for Kernel
0xC0000000

user stack
>
2esp <+

shared _praries

-0x40000000

brk pF—>

N
run time heap

static data segment

Loaded from exec text segment (program)

-0x08048000
0x00000000 28

unused

x86 function calling

* Place the arguments on the stack
* Compare with RISC-V where the first arguments are in registers

« CALL the function

* Which pushes the return address onto the stack (RIP == Return Instruction Pointer)

 do your stuff...
« Start by saving the old EP on the stack (SFP == Saved Frame Pointer)

- Restore everything
* Reload EBP, pop ESP as necessary

- RET

* Which jumps to the return address that is currently pointed to by ESP

* And can optionally pop the stack a lot further...
29

Computer Science 161 Fall 2Q

- 0 < C0000000

share:!f‘ raries

run time heap

static data
segment

text segment

unused

arguments

To previous stack
frame pointer

m

return address

stack frame pointer

exception handlers

-0x40000000

local variables

To the point at which
this function was called

callee saved registers

(program) <€
0x08048000

-0x00000000

30

Computer Science 161 Fall 2019

void safe () {
char buf[64];

fgets (buf, 64, stdin);

31

Computer Science 161 Fall 2019

void safer () {
char buf[64];

fgets (buf,sizeof (buf) ,hstdin);

32

Computer Science 161 Fall 2019

void wvulnerable ﬁnt len, char *datQ {

char buf[64];
if (len > 64)
return;
memcpy (buf, data, len);

}

P ——
memcpy (void *sl, const void *s2, (size_9 n);

_ 33

Computer Science 161 Fall 2019

void safe(size t len, char *data) {
char buf[64];
if (len > 64)
return;
memcpy (buf, data, len);

}

34

Computer Science 161 Fall 2019

void f(size t len, char *data) ({
char *buf = malloc(len+2);
i1f (buf == NULL) return;
memcpy (buf, data, 1len);
buf[len] = '\n';
buf[len+l] = '\0';

Is it safe? Talk to your partner.

35

Broward Vote-Counting Blunder Changes Amendment Result

POSTED: 1:34 pm EST November 4, 2004

BROWARD COUNTY, Fla. -- The Broward County Elections Department has egg on its face today
after a computer glitch misreported a key amendment race, according to WPLG-TV in Miami.

Amendment 4, which would allow Miami-Dade and Broward counties
to hold a future election to decide if slot machines should be allowed at
racetracks, was thought to be tied. But now that a computer glitch for
machines counting absentee ballots has been exposed, it turns out the
amendment passed.

Software is not geared to count more than 32,000 votes in a
precinct. So what happens when it gets to 32,000 is the software starts , ,
nting backward," said Broward County Mayor Ilene Lieberman Broward County Mayor o
[lene Lieberman says
voting counting error is an

"embarrassing mistake."

That means that Amendment 4 passed in Broward County by more
than 240,000 votes rather than the 166,000-vote margin reported
Wednesday night. That increase changes the overall statewide results
in what had been a neck-and-neck race, one for which recounts had
been going on today. But with news of Broward’s error, it’s clear amendment 4 passed. 36

Computer Science 161 Fall 2019

void wvulnerable () {
char buf[64];

if (fgets(buf, 64, stdin) == NULL)

return,
Cprintf (buf) >

}

37

Computer Science 161 Fall 2019 Weaver

printf ("you scored %d\n", score);

38

sfp

printf(“you scored %\n”, score); :f:
> score

»| 0x8048464

rip
printf() sfp

\o0|\n|d

% d| e

r (o] C S

o |y |<— 0x8048464

39

Computer Science 161 Fall 2019 Weaver

printf ("a %s costs $%d\n", item, price);

40

printf("a % costs $%\n", item, price);

sfp

I

price
> item
» 0x8048464
rip
printf() sfp

$ s |t
s | o]|c
s | % a

0x8048464

41

Fun With printf format strings...

printf ("10 c_

42

sfp
|J_—I
printf(“100% dude!”) ; ! :
H—
?27??
»| 0x8048464
rip
printf() sfp
\O|! |e
d

%| 0| 0|1 |«—0x8048464

43

More Fun With printf format strings...

Computer Science 161 Fall 2019

printf ("100% dude!") ;

= prints value 4 bytes above retaddr as integer
printf ("100% sir!'");

=> prints bytes pointed to by that stack entry

up through first NUL
printf ("sd 3d 3¥d 4 ...");

=> prints series of stack entries as integers
printf ("sd %s") ;

=> prints value 4 bytes above retaddr plus bytes

pointed to by preceding stack entry
printf ("100% nuke’'m!") ;

Computer Science 161 Fall 2019 Weaver

%n writes the number of characters printed so far
into the corresponding format argument.
int report cost(int item num, int price) ({
int colon offset;
printf("item %d:%n $%d\n", item num,
&colon offset, price);
return colon offset;

}

report cost(3, 22) prints "item 3: $22"
and returns the value 7

report cost (987, 5) prints "item 987: $5"
and returns the value 9

45

Fun With printf format strings...

printf ("100% dude!");

= prints value 4 bytes above retaddr as integer
printf ("100% sir!");

=> prints bytes pointed to by that stack entry

up through first NUL
printf("%d %d %d %4 ...");
=> prints series of stack entries as integers
printf ("sd %s") ;
=> prints value 4 bytes above retaddr plus bytes

pointed to by preceding stack entry
printf ("100% nuke’'m!") ;

= writes the value 3 to the address pointed to by stack entry

46

Computer Science 161 Fall 2019

void safe () {
char buf[64];
if (fgets(buf, 64, stdin) == NULL)
return;
printf ("%$s", buf);

}

47

