
Computer Science 161 Fall 2019 Weaver

Software Security Continued

 1

Computer Science 161 Fall 2019 Weaver

It isn't just the stack...

• Control flow attacks require that the attacker overwrite a
piece of memory that contains a pointer for future code
execution

• The return address on the stack is just the easiest target

• You can cause plenty of mayhem overwriting memory in the
heap...

• And it is made easier when targeting C++

• Allows alternate ways to hijack control flow of the program

 2

Computer Science 161 Fall 2019 Weaver

Compiler Operation: 
Compiling Object Oriented Code

 3

class Foo {
 int i, j, k;
 public virtual void bar(){ ... }
 public virtual void baz(){ ... }
....

vtable ptr (class Foo)

i

j

k

ptr to Foo::bar

ptr to Foo::baz

...

...

Computer Science 161 Fall 2019 Weaver

So Targets For 
Overwriting...
• If you can overwrite a vtable pointer…

• It is effectively the same as overwriting the return address pointer on the stack: 

When the function gets invoked the control flow is hijacked to point to the attacker’s code

• The only difference is that instead of overwriting with a pointer you overwrite it with a pointer to a

table of pointers...

• Heap Overflow:

• A buffer in the heap is not checked: 

Attacker writes beyond and overwrites the vtable pointer of the next object in memory

• Use-after-free:

• An object is deallocated too early: 

Attacker writes new data in a newly reallocated block that overwrites the vtable pointer

• Object is then invoked

 4

Computer Science 161 Fall 2019 Weaver

Magic Numbers & Exploitation…

• Exploits can often be very brittle

• You see this on your Project 1: Your ./egg will not work on

someone else’s VM because the memory layout is different

• Making an exploit robust is an art unto itself:
e.g. EXTRABACON…

• EXTRABACON is an NSA exploit for Cisco ASA
“Adaptive Security Appliances”

• It had an exploitable stack-overflow vulnerability in the SNMP

read operation

• But actual exploitation required two steps: 

Query for the particular version (with an SMTP read) 
Select the proper set of magic numbers for that version

 5

Computer Science 161 Fall 2019 Weaver

A hack that helps: 
NOOP sled...
• Don't just overwrite the pointer and then provide the code

you want to execute...

• Instead, write a large number of NOOP operations

• Instructions that do nothing

• Now if you are a little off, it doesn't matter

• Since if you are close enough, control flow will land in the sled and start

running...

 6

Computer Science 161 Fall 2019 Weaver

ETERNALBLUE(screen)

• ETERNALBLUE is another NSA exploit

• Stolen by the same group ("ShadowBrokers")

which stole EXTRABACON

• Eventually it was very robust...

• This was "god mode":  

remote exploit Windows through SMBv1
(Windows File sharing)

• But initially it was jokingly called
ETERNALBLUESCREEN

• Because it would crash Windows computers

more reliably than exploitation.
 7

Computer Science 161 Fall 2019 Weaver

Reasoning About 
Memory Safety
• Memory Safety: No accesses to undefined memory

• "Undefined" is with respect to the semantics of the programming language

• Read Access:

• An attacker can read memory that he isn't supposed to

• Write Access:

• An attacker can write memory that she isn't supposed to

• Execute Access:

• An attacker can transfer control flow to memory that they isn't supposed to

 8

Computer Science 161 Fall 2019 Weaver

Reasoning About Safety

• How can we have confidence that our code executes in a safe (and correct,
ideally) fashion?

• Approach: build up confidence on a function-by-function / module-by-module
basis

• Modularity provides boundaries for our reasoning:

• Preconditions: what must hold for function to operate correctly

• Postconditions: what holds after function completes

• These basically describe a contract for using the module

• Notions also apply to individual statements (what must hold for correctness;

what holds after execution)

• Stmt #1’s postcondition should logically imply Stmt #2’s precondition

• Invariants: conditions that always hold at a given point in a function (this particularly matters for loops)

 9

Computer Science 161 Fall 2019 Weaver

 10

int deref(int *p) {
 return *p;
}

Precondition?

Computer Science 161 Fall 2019 Weaver

 11

/* requires: p != NULL
 (and p a valid pointer) */
int deref(int *p) {
 return *p;
}

Precondition: what needs to hold for function to
operate correctly.

Needs to be expressed in a way that a person writing
code to call the function knows how to evaluate.

Computer Science 161 Fall 2019 Weaver

 12

void *mymalloc(size_t n) {
 void *p = malloc(n);
 if (!p) { perror("malloc"); exit(1); }
 return p;
}

Postcondition?

Computer Science 161 Fall 2019 Weaver

 13

/* ensures: retval != NULL (and a valid
pointer) */
void *mymalloc(size_t n) {
 void *p = malloc(n);
 if (!p) { perror("malloc"); exit(1);
}
 return p;
} Postcondition: what the function promises will

hold upon its return.

Likewise, expressed in a way that a person using
the call in their code knows how to make use of.

Computer Science 161 Fall 2019 Weaver

 14

int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 total += a[i];
 return total;
}

Precondition?

Computer Science 161 Fall 2019 Weaver

 15

int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 total += a[i];
 return total;
}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function

Computer Science 161 Fall 2019 Weaver

 16

int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 total += a[i];
 return total;
}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access?

(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function

Computer Science 161 Fall 2019 Weaver

 17

int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 total += a[i];
 return total;
}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function

Computer Science 161 Fall 2019 Weaver

 18

int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* ?? */
 total += a[i];
 return total;
}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires?

(3) Propagate requirement up to beginning of function

Computer Science 161 Fall 2019 Weaver

 19

int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* requires: a != NULL &&  
 0 <= i && i < size(a) */
 total += a[i];
 return total;
}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function

size(X) = number of elements allocated for region pointed to by X 
size(NULL) = 0

This is an abstract notion, not something built into C (like sizeof).

Computer Science 161 Fall 2019 Weaver

 20

int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* requires: a != NULL &&  
 0 <= i && i < size(a) */
 total += a[i];
 return total;
}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function?

Computer Science 161 Fall 2019 Weaver

 21

Let’s simplify, given that a never changes.

int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* requires: a != NULL &&  
 0 <= i && i < size(a) */
 total += a[i];
 return total;
}

Computer Science 161 Fall 2019 Weaver

 22

/* requires: a != NULL */  
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* requires: 0 <= i && i < size(a) */
 total += a[i];
 return total;
}

Computer Science 161 Fall 2019 Weaver

 23

/* requires: a != NULL */  
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* requires: 0 <= i && i < size(a) */
 total += a[i];
 return total;
}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function?

Computer Science 161 Fall 2019 Weaver

 24

?

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function?

/* requires: a != NULL */  
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* requires: 0 <= i && i < size(a) */
 total += a[i];
 return total;
}

Computer Science 161 Fall 2019 Weaver

 25

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function?

✓
/* requires: a != NULL */  
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* requires: 0 <= i && i < size(a) */
 total += a[i];
 return total;
}

Computer Science 161 Fall 2019 Weaver

 26

✓

The 0 <= i part is clear, so let’s focus for now on the rest.

/* requires: a != NULL */  
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* requires: 0 <= i && i < size(a) */
 total += a[i];
 return total;
}

Computer Science 161 Fall 2019 Weaver

 27

/* requires: a != NULL */  
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* requires: i < size(a) */
 total += a[i];
 return total;
}

Computer Science 161 Fall 2019 Weaver

 28

/* requires: a != NULL */
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* requires: i < size(a) */
 total += a[i];
 return total;
}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function?

?

Computer Science 161 Fall 2019 Weaver

 29

/* requires: a != NULL */
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* invariant?: i < n && n <= size(a) */
 /* requires: i < size(a) */
 total += a[i];
 return total;
}
General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function?

?

Computer Science 161 Fall 2019 Weaver

 30

?

How to prove our candidate invariant?
n <= size(a) is straightforward because n never changes.

/* requires: a != NULL */
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* invariant?: i < n && n <= size(a) */
 /* requires: i < size(a) */
 total += a[i];
 return total;
}

Computer Science 161 Fall 2019 Weaver

 31

/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* invariant?: i < n && n <= size(a) */
 /* requires: i < size(a) */
 total += a[i];
 return total;
}

Computer Science 161 Fall 2019 Weaver

/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* invariant?: i < n && n <= size(a) */
 /* requires: i < size(a) */
 total += a[i];
 return total;
}

 32

What about i < n ?

?

Computer Science 161 Fall 2019 Weaver

/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* invariant?: i < n && n <= size(a) */
 /* requires: i < size(a) */
 total += a[i];
 return total;
}

 33

?

What about i < n ? That follows from the loop condition.

Computer Science 161 Fall 2019 Weaver

/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* invariant?: i < n && n <= size(a) */
 /* requires: i < size(a) */
 total += a[i];
 return total;
}

 34

At this point we know the proposed invariant will always hold...

Computer Science 161 Fall 2019 Weaver

 35

… and we’re done!

/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* invariant?: i < n && n <= size(a) */
 /* requires: i < size(a) */
 total += a[i];
 return total;
}

Computer Science 161 Fall 2019 Weaver

 36

/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 /* invariant: a != NULL &&
 0 <= i && i < n && n <= size(a) */
 total += a[i];
 return total;
}

A more complicated loop might need us to use induction:
	 Base case: first entrance into loop.
 Induction: show that postcondition of last statement of  

 loop, plus loop test condition, implies invariant.

Computer Science 161 Fall 2019 Weaver

 37

int sumderef(int *a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 total += *(a[i]);
 return total;
}

Computer Science 161 Fall 2019 Weaver

 38

/* requires: a != NULL &&
 size(a) >= n &&
 ??? */
int sumderef(int *a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 total += *(a[i]);
 return total;
}

Computer Science 161 Fall 2019 Weaver

 39

/* requires: a != NULL &&
 size(a) >= n &&
 for all j in 0..n-1, a[j] != NULL */
int sumderef(int *a[], size_t n) {
 int total = 0;
 for (size_t i=0; i<n; i++)
 total += *(a[i]);
 return total;
}

This may still be memory safe
but it can still have undefined behavior!

Computer Science 161 Fall 2019 Weaver

 40

char *tbl[N]; /* N > 0, has type int */

int hash(char *s) {
 int h = 17;
 while (*s)
 h = 257*h + (*s++) + 3;
 return h % N;
}

bool search(char *s) {
 int i = hash(s);
 return tbl[i] && (strcmp(tbl[i], s)==0);
}

Computer Science 161 Fall 2019 Weaver

 41

char *tbl[N];

/* ensures: ??? */
int hash(char *s) {
 int h = 17;
 while (*s)
 h = 257*h + (*s++) + 3;
 return h % N;
}

bool search(char *s) {
 int i = hash(s);
 return tbl[i] && (strcmp(tbl[i], s)==0);
}

What is the correct postcondition for hash()? 
(a) 0 <= retval < N, (b) 0 <= retval, 
(c) retval < N, (d) none of the above. 
Discuss with a partner.

Computer Science 161 Fall 2019 Weaver

 42

char *tbl[N];

/* ensures: ??? */
int hash(char *s) {
 int h = 17;
 while (*s)
 h = 257*h + (*s++) + 3;
 return h % N;
}

bool search(char *s) {
 int i = hash(s);
 return tbl[i] && (strcmp(tbl[i], s)==0);
}

What is the correct postcondition for hash()? 
(a) 0 <= retval < N, (b) 0 <= retval, 
(c) retval < N, (d) none of the above. 
Discuss with a partner.

Computer Science 161 Fall 2019 Weaver

char *tbl[N];

/* ensures: ??? */
int hash(char *s) {
 int h = 17;
 while (*s)
 h = 257*h + (*s++) + 3;
 return h % N;
}

bool search(char *s) {
 int i = hash(s);
 return tbl[i] && (strcmp(tbl[i], s)==0);
}

 43

What is the correct postcondition for hash()? 
(a) 0 <= retval < N, (b) 0 <= retval, 
(c) retval < N, (d) none of the above. 
Discuss with a partner.

Computer Science 161 Fall 2019 Weaver

char *tbl[N];

/* ensures: ??? */
int hash(char *s) {
 int h = 17;
 while (*s)
 h = 257*h + (*s++) + 3;
 return h % N;
}

bool search(char *s) {
 int i = hash(s);
 return tbl[i] && (strcmp(tbl[i], s)==0);
}

 44

What is the correct postcondition for hash()? 
(a) 0 <= retval < N, (b) 0 <= retval, 
(c) retval < N, (d) none of the above. 
Discuss with a partner.

Computer Science 161 Fall 2019 Weaver

char *tbl[N];

/* ensures: ??? */
int hash(char *s) {
 int h = 17;
 while (*s)
 h = 257*h + (*s++) + 3;
 return h % N;
}

bool search(char *s) {
 int i = hash(s);
 return tbl[i] && (strcmp(tbl[i], s)==0);
}

 45

What is the correct postcondition for hash()? 
(a) 0 <= retval < N, (b) 0 <= retval, 
(c) retval < N, (d) none of the above. 
Discuss with a partner.

Computer Science 161 Fall 2019 Weaver

 46

char *tbl[N];

/* ensures: 0 <= retval && retval < N */
int hash(char *s) {
 int h = 17; /* 0 <= h */
 while (*s)
 h = 257*h + (*s++) + 3;
 return h % N;
}

bool search(char *s) {
 int i = hash(s);
 return tbl[i] && (strcmp(tbl[i], s)==0);
}

Computer Science 161 Fall 2019 Weaver

 47

char *tbl[N];

/* ensures: 0 <= retval && retval < N */
int hash(char *s) {
 int h = 17; /* 0 <= h */
 while (*s) /* 0 <= h */
 h = 257*h + (*s++) + 3;
 return h % N;
}

bool search(char *s) {
 int i = hash(s);
 return tbl[i] && (strcmp(tbl[i], s)==0);
}

Computer Science 161 Fall 2019 Weaver

 48

char *tbl[N];

/* ensures: 0 <= retval && retval < N */
int hash(char *s) {
 int h = 17; /* 0 <= h */
 while (*s) /* 0 <= h */
 h = 257*h + (*s++) + 3; /* 0 <= h */
 return h % N;
}

bool search(char *s) {
 int i = hash(s);
 return tbl[i] && (strcmp(tbl[i], s)==0);
}

Computer Science 161 Fall 2019 Weaver

 49

char *tbl[N];

/* ensures: 0 <= retval && retval < N */
int hash(char *s) {
 int h = 17; /* 0 <= h */
 while (*s) /* 0 <= h */
 h = 257*h + (*s++) + 3; /* 0 <= h */
 return h % N; /* 0 <= retval < N */
}

bool search(char *s) {
 int i = hash(s);
 return tbl[i] && (strcmp(tbl[i], s)==0);
}

Computer Science 161 Fall 2019 Weaver

char *tbl[N];

/* ensures: 0 <= retval && retval < N */
int hash(char *s) {
 int h = 17; /* 0 <= h */
 while (*s) /* 0 <= h */
 h = 257*h + (*s++) + 3; /* 0 <= h */
 return h % N; /* 0 <= retval < N */
}

bool search(char *s) {
 int i = hash(s);
 return tbl[i] && (strcmp(tbl[i], s)==0);
} 50

Computer Science 161 Fall 2019 Weaver

char *tbl[N];

/* ensures: 0 <= retval && retval < N */
 unsigned int hash(char *s) {
 unsigned int h = 17; /* 0 <= h */
 while (*s) /* 0 <= h */
 h = 257*h + (*s++) + 3; /* 0 <= h */
 return h % N; /* 0 <= retval < N */
}

bool search(char *s) {
 unsigned int i = hash(s);
 return tbl[i] && (strcmp(tbl[i], s)==0);
} 51

Computer Science 161 Fall 2019 Weaver

Or an alternative: 
FFS Don't Use C or C++!!!!
• Do you honestly think a human is going to go through this

process for all their code?

• Because that is what it takes to prevent undefined memory behavior in C or C++

• Instead, use a safe language:

• Turns "undefined" memory references into an immediate exception or program

termination

• Now you simply don't have to worry about buffer overflows and similar vulnerabilities

• Plenty to chose from:

• Python, Java, Go (project 2), Rust (if you need C's mostly-deterministicish

performance), Swift... Pretty much everything other than  
C/C++/Objective C

 52

