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Software Security Continued
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It isn't just the stack...

• Control flow attacks require that the attacker overwrite a 
piece of memory that contains a pointer for future code 
execution


• The return address on the stack is just the easiest target


• You can cause plenty of mayhem overwriting memory in the 
heap... 


• And it is made easier when targeting C++


• Allows alternate ways to hijack control flow of the program
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Compiler Operation: 
Compiling Object Oriented Code
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class Foo { 
   int i, j, k; 
   public virtual void bar(){ ... } 
   public virtual void baz(){ ... } 
....

vtable ptr (class Foo)

i

j

k

ptr to Foo::bar

ptr to Foo::baz

...

...
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So Targets For 
Overwriting...
• If you can overwrite a vtable pointer…

• It is effectively the same as overwriting the return address pointer on the stack: 

When the function gets invoked the control flow is hijacked to point to the attacker’s code

• The only difference is that instead of overwriting with a pointer you overwrite it with a pointer to a 

table of pointers...


• Heap Overflow:

• A buffer in the heap is not checked: 

Attacker writes beyond and overwrites the vtable pointer of the next object in memory


• Use-after-free:

• An object is deallocated too early: 

Attacker writes new data in a newly reallocated block that overwrites the vtable pointer

• Object is then invoked
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Magic Numbers & Exploitation…

• Exploits can often be very brittle

• You see this on your Project 1:  Your ./egg will not work on 

someone else’s VM because the memory layout is different


• Making an exploit robust is an art unto itself: 
e.g. EXTRABACON…


• EXTRABACON is an NSA exploit for Cisco ASA 
“Adaptive Security Appliances”

• It had an exploitable stack-overflow vulnerability in the SNMP 

read operation

• But actual exploitation required two steps: 

Query for the particular version (with an SMTP read) 
Select the proper set of magic numbers for that version 
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A hack that helps: 
NOOP sled...
• Don't just overwrite the pointer and then provide the code 

you want to execute...

• Instead, write a large number of NOOP operations

• Instructions that do nothing


• Now if you are a little off, it doesn't matter

• Since if you are close enough, control flow will land in the sled and start 

running...
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ETERNALBLUE(screen)

• ETERNALBLUE is another NSA exploit

• Stolen by the same group ("ShadowBrokers") 

which stole EXTRABACON


• Eventually it was very robust...

• This was "god mode":  

remote exploit Windows through SMBv1 
(Windows File sharing)


• But initially it was jokingly called 
ETERNALBLUESCREEN

• Because it would crash Windows computers 

more reliably than exploitation.
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Reasoning About 
Memory Safety
• Memory Safety: No accesses to undefined memory

• "Undefined" is with respect to the semantics of the programming language


• Read Access:

• An attacker can read memory that he isn't supposed to


• Write Access:

• An attacker can write memory that she isn't supposed to


• Execute Access:

• An attacker can transfer control flow to memory that they isn't supposed to
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Reasoning About Safety

• How can we have confidence that our code executes in a safe (and correct, 
ideally) fashion?


• Approach: build up confidence on a function-by-function / module-by-module 
basis


• Modularity provides boundaries for our reasoning:

• Preconditions: what must hold for function to operate correctly

• Postconditions: what holds after function completes


• These basically describe a contract for using the module

• Notions also apply to individual statements (what must hold for correctness; 

what holds after execution)

• Stmt #1’s postcondition should logically imply Stmt #2’s precondition

• Invariants: conditions that always hold at a given point in a function (this particularly matters for loops)
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int deref(int *p) {
    return *p;
}

Precondition?
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/* requires: p != NULL 
             (and p a valid pointer) */ 
int deref(int *p) {
    return *p;
}

Precondition: what needs to hold for function to 
operate correctly. 

Needs to be expressed in a way that a person writing 
code to call the function knows how to evaluate.
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void *mymalloc(size_t n) {
    void *p = malloc(n);
    if (!p) { perror("malloc"); exit(1); }
    return p;
}

Postcondition?
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/* ensures: retval != NULL (and a valid 
pointer) */ 
void *mymalloc(size_t n) {
    void *p = malloc(n);
    if (!p) { perror("malloc"); exit(1); 
}
    return p;
} Postcondition: what the function promises will 

hold upon its return. 

Likewise, expressed in a way that a person using 
the call in their code knows how to make use of.
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int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    total += a[i];
  return total;
}

Precondition?
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int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    total += a[i];
  return total;
}

General correctness proof strategy for memory safety: 
(1) Identify each point of memory access 
(2) Write down precondition it requires 
(3) Propagate requirement up to beginning of function 
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int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    total += a[i];
  return total;
}

General correctness proof strategy for memory safety: 
(1) Identify each point of memory access?

(2) Write down precondition it requires 
(3) Propagate requirement up to beginning of function 
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int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    total += a[i];
  return total;
}

General correctness proof strategy for memory safety: 
(1) Identify each point of memory access

(2) Write down precondition it requires 
(3) Propagate requirement up to beginning of function 
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int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    /* ?? */ 
    total += a[i];
  return total;
}

General correctness proof strategy for memory safety: 
(1) Identify each point of memory access

(2) Write down precondition it requires?

(3) Propagate requirement up to beginning of function 
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int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    /* requires: a != NULL &&  
                 0 <= i && i < size(a) */ 
    total += a[i];
  return total;
}

General correctness proof strategy for memory safety: 
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function 

size(X) = number of elements allocated for region pointed to by X 
size(NULL) = 0 

This is an abstract notion, not something built into C (like sizeof). 
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int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    /* requires: a != NULL &&  
                 0 <= i && i < size(a) */ 
    total += a[i];
  return total;
}

General correctness proof strategy for memory safety: 
(1) Identify each point of memory access

(2) Write down precondition it requires 
(3) Propagate requirement up to beginning of function? 
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Let’s simplify, given that a never changes.

int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    /* requires: a != NULL &&  
                 0 <= i && i < size(a) */ 
    total += a[i];
  return total;
}
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/* requires: a != NULL */  
int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    /* requires: 0 <= i && i < size(a) */ 
    total += a[i];
  return total;
}
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/* requires: a != NULL */  
int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    /* requires: 0 <= i && i < size(a) */ 
    total += a[i];
  return total;
}

General correctness proof strategy for memory safety: 
(1) Identify each point of memory access

(2) Write down precondition it requires 
(3) Propagate requirement up to beginning of function? 
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?

General correctness proof strategy for memory safety: 
(1) Identify each point of memory access

(2) Write down precondition it requires 
(3) Propagate requirement up to beginning of function? 

/* requires: a != NULL */  
int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    /* requires: 0 <= i && i < size(a) */ 
    total += a[i];
  return total;
}
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General correctness proof strategy for memory safety: 
(1) Identify each point of memory access

(2) Write down precondition it requires 
(3) Propagate requirement up to beginning of function? 

✓
/* requires: a != NULL */  
int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    /* requires: 0 <= i && i < size(a) */ 
    total += a[i];
  return total;
}
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✓

The 0 <= i part is clear, so let’s focus for now on the rest.

/* requires: a != NULL */  
int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    /* requires: 0 <= i && i < size(a) */ 
    total += a[i];
  return total;
}
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/* requires: a != NULL */  
int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    /* requires: i < size(a) */ 
    total += a[i];
  return total;
}
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/* requires: a != NULL */
int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    /* requires: i < size(a) */ 
    total += a[i];
  return total;
}

General correctness proof strategy for memory safety: 
(1) Identify each point of memory access

(2) Write down precondition it requires 
(3) Propagate requirement up to beginning of function? 

?
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/* requires: a != NULL */
int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    /* invariant?: i < n && n <= size(a) */
    /* requires: i < size(a) */ 
    total += a[i];
  return total;
}
General correctness proof strategy for memory safety: 
(1) Identify each point of memory access

(2) Write down precondition it requires 
(3) Propagate requirement up to beginning of function? 

?
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?

How to prove our candidate invariant? 
n <= size(a) is straightforward because n never changes.

/* requires: a != NULL */
int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    /* invariant?: i < n && n <= size(a) */
    /* requires: i < size(a) */ 
    total += a[i];
  return total;
}
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/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    /* invariant?: i < n && n <= size(a) */
    /* requires: i < size(a) */ 
    total += a[i];
  return total;
}
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/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    /* invariant?: i < n && n <= size(a) */
    /* requires: i < size(a) */ 
    total += a[i];
  return total;
}
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What about i < n ?  

?
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/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    /* invariant?: i < n && n <= size(a) */
    /* requires: i < size(a) */ 
    total += a[i];
  return total;
}
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?

What about i < n ?  That follows from the loop condition.
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/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    /* invariant?: i < n && n <= size(a) */
    /* requires: i < size(a) */ 
    total += a[i];
  return total;
}
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At this point we know the proposed invariant will always hold...
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… and we’re done!

/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    /* invariant?: i < n && n <= size(a) */
    /* requires: i < size(a) */ 
    total += a[i];
  return total;
}
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/* requires: a != NULL && n <= size(a) */
int sum(int a[], size_t n) {
  int total = 0;
  for (size_t i=0; i<n; i++)
    /* invariant: a != NULL &&
       0 <= i && i < n && n <= size(a) */
    total += a[i];
  return total;
}

A more complicated loop might need us to use induction: 
	 Base case: first entrance into loop. 
     Induction: show that postcondition of last statement of  

                  loop, plus loop test condition, implies invariant.
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int sumderef(int *a[], size_t n) {
    int total = 0;
    for (size_t i=0; i<n; i++)
         total += *(a[i]);
    return total;
}
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/* requires: a != NULL &&
     size(a) >= n &&
            ???                        */
int sumderef(int *a[], size_t n) {
    int total = 0;
    for (size_t i=0; i<n; i++)
         total += *(a[i]);
    return total;
}
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/* requires: a != NULL &&
     size(a) >= n &&
     for all j in 0..n-1, a[j] != NULL */
int sumderef(int *a[], size_t n) {
    int total = 0;
    for (size_t i=0; i<n; i++)
         total += *(a[i]);
    return total;
}

This may still be memory safe 
but it can still have undefined behavior!
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char *tbl[N]; /* N > 0, has type int */ 

int hash(char *s) {
  int h = 17;
  while (*s)
    h = 257*h + (*s++) + 3;
  return h % N;
}

bool search(char *s) {
  int i = hash(s);
  return tbl[i] && (strcmp(tbl[i], s)==0);
}
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char *tbl[N];

/* ensures: ??? */ 
int hash(char *s) {
  int h = 17;
  while (*s)
    h = 257*h + (*s++) + 3;
  return h % N;
}

bool search(char *s) {
  int i = hash(s);
  return tbl[i] && (strcmp(tbl[i], s)==0);
}

What is the correct postcondition for hash()? 
(a) 0 <= retval < N, (b) 0 <= retval, 
(c) retval < N, (d) none of the above. 
Discuss with a partner.
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char *tbl[N];

/* ensures: ??? */ 
int hash(char *s) {
  int h = 17;
  while (*s)
    h = 257*h + (*s++) + 3;
  return h % N;
}

bool search(char *s) {
  int i = hash(s);
  return tbl[i] && (strcmp(tbl[i], s)==0);
}

What is the correct postcondition for hash()? 
(a) 0 <= retval < N, (b) 0 <= retval, 
(c) retval < N, (d) none of the above. 
Discuss with a partner.
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char *tbl[N];

/* ensures: ??? */ 
int hash(char *s) {
  int h = 17;
  while (*s)
    h = 257*h + (*s++) + 3;
  return h % N;
}

bool search(char *s) {
  int i = hash(s);
  return tbl[i] && (strcmp(tbl[i], s)==0);
}
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What is the correct postcondition for hash()? 
(a) 0 <= retval < N, (b) 0 <= retval, 
(c) retval < N, (d) none of the above. 
Discuss with a partner.
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char *tbl[N];

/* ensures: ??? */ 
int hash(char *s) {
  int h = 17;
  while (*s)
    h = 257*h + (*s++) + 3;
  return h % N;
}

bool search(char *s) {
  int i = hash(s);
  return tbl[i] && (strcmp(tbl[i], s)==0);
}
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What is the correct postcondition for hash()? 
(a) 0 <= retval < N, (b) 0 <= retval, 
(c) retval < N, (d) none of the above. 
Discuss with a partner.
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char *tbl[N];

/* ensures: ??? */ 
int hash(char *s) {
  int h = 17;
  while (*s)
    h = 257*h + (*s++) + 3;
  return h % N;
}

bool search(char *s) {
  int i = hash(s);
  return tbl[i] && (strcmp(tbl[i], s)==0);
}
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What is the correct postcondition for hash()? 
(a) 0 <= retval < N, (b) 0 <= retval, 
(c) retval < N, (d) none of the above. 
Discuss with a partner.
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char *tbl[N]; 

/* ensures: 0 <= retval && retval < N */ 
int hash(char *s) {
  int h = 17;                 /* 0 <= h */ 
  while (*s)                  
    h = 257*h + (*s++) + 3;   
  return h % N;  
}

bool search(char *s) {
  int i = hash(s);
  return tbl[i] && (strcmp(tbl[i], s)==0);
}
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char *tbl[N]; 

/* ensures: 0 <= retval && retval < N */ 
int hash(char *s) {
  int h = 17;                 /* 0 <= h */ 
  while (*s)                  /* 0 <= h */ 
    h = 257*h + (*s++) + 3;  
  return h % N;  
}

bool search(char *s) {
  int i = hash(s);
  return tbl[i] && (strcmp(tbl[i], s)==0);
}
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char *tbl[N]; 

/* ensures: 0 <= retval && retval < N */ 
int hash(char *s) {
  int h = 17;                 /* 0 <= h */ 
  while (*s)                  /* 0 <= h */ 
    h = 257*h + (*s++) + 3;   /* 0 <= h */ 
  return h % N; 
}

bool search(char *s) {
  int i = hash(s);
  return tbl[i] && (strcmp(tbl[i], s)==0);
}
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char *tbl[N]; 

/* ensures: 0 <= retval && retval < N */ 
int hash(char *s) {
  int h = 17;                 /* 0 <= h */ 
  while (*s)                  /* 0 <= h */ 
    h = 257*h + (*s++) + 3;   /* 0 <= h */ 
  return h % N; /* 0 <= retval < N */  
}

bool search(char *s) {
  int i = hash(s);
  return tbl[i] && (strcmp(tbl[i], s)==0);
}
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char *tbl[N]; 

/* ensures: 0 <= retval && retval < N */ 
int hash(char *s) {
  int h = 17;                 /* 0 <= h */ 
  while (*s)                  /* 0 <= h */ 
    h = 257*h + (*s++) + 3;   /* 0 <= h */ 
  return h % N; /* 0 <= retval < N */  
}

bool search(char *s) {
  int i = hash(s);
  return tbl[i] && (strcmp(tbl[i], s)==0);
}  50
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char *tbl[N]; 

/* ensures: 0 <= retval && retval < N */ 
  unsigned int hash(char *s) {
  unsigned int h = 17;          /* 0 <= h */ 
  while (*s)                    /* 0 <= h */ 
    h = 257*h + (*s++) + 3;     /* 0 <= h */ 
  return h % N;        /* 0 <= retval < N */  
}

bool search(char *s) {
  unsigned int i = hash(s);
  return tbl[i] && (strcmp(tbl[i], s)==0);
}  51
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Or an alternative: 
FFS Don't Use C or C++!!!!
• Do you honestly think a human is going to go through this 

process for all their code?

• Because that is what it takes to prevent undefined memory behavior in C or C++


• Instead, use a safe language:

• Turns "undefined" memory references into an immediate exception or program 

termination

• Now you simply don't have to worry about buffer overflows and similar vulnerabilities


• Plenty to chose from:

• Python, Java, Go (project 2), Rust (if you need C's mostly-deterministicish 

performance), Swift...  Pretty much everything other than  
C/C++/Objective C
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