
Computer Science 161 Fall 2019 Weaver

 1

Cryptography is nightmare magic
math that cares what kind of pen
you use -@swiftonsecurity

Computer Science 161 Fall 2019 Weaver

More Defenses 
& Start of Crypto

 2

Computer Science 161 Fall 2019 Weaver

But Suppose You Don’t Want

To Reprogram Things? What Then?
• A large back-and-forth arms race trying to prevent memory

errors from being exploitable for code injection

• An attacker can still use them to crash the program

• An attempt at defense-in-depth

• Stack Canaries

• Non-Executable Pages

• Address-Space-Layout-Randomization

• And some R&D down the pipe

• E.g. selfrando

 3

Computer Science 161 Fall 2019 Weaver

Stack Canaries…

• Goal is to protect the return pointer
from being overwritten by a stack
buffer…

• When the program starts up, create a
random value

• The “stack canary”

• When returning in a function

• First check the canary against the stored value

 4

Saved Return Addr

Saved Frame Ptr

🐦🐦🐦🐦🐦🐦🐦🐦🐦🐦🐦

data...

data...

data...

data...

aoeu

Computer Science 161 Fall 2019 Weaver

How To (Not) Kill the Canary…

• Find out what the canary is!

• A format string vulnerability

• An information leak elsewhere that dumps it

• Now can overwrite the canary with itself…

• Write around the canary

• Format string vulnerabilities

• Overflow in the heap, or a C++ object on the stack

• QED: Bypassable but raises the bar

• A simple stack overflow doesn’t work anymore: 

Need something a bit more robust

• Minor but nearly negligible performance impact

• First deployed in 1997 with “StackGuard”

• It requires a compiler flag to enable on Linux, but…

• THERE IS NO EXCUSE NOT TO HAVE THIS ENABLED!!! I'M LOOKING AT YOU CISCO ASA!

 5

Computer Science 161 Fall 2019 Weaver

And Canary Entropy…

• On 32b x86 the canary is a 32b value

• It is 64b on x86-64

• One byte of the canary is always x0

• Since some buffer overflows can’t include null bytes:  

e.g. if the vulnerability is in a bad call to strcpy

• But this means you can (possibly) brute-force the canary

• It would only requires an expected 224 tries or so!

• Think of this as “you need to try ~16 million times”: 

210 ~= 103

 6

Computer Science 161 Fall 2019 Weaver

Non-Executable Pages

• We remember how the TLB/page table has multiple bits:

• R -> Can Read 

W -> Can Write 
X -> Can Execute

• So lets maintain W xor X as a global property

• Now you can’t write code to the stack or heap

• Unfortunately that is insufficient

• “Return into libc”: Just set up the stack and “return” to exec

• Especially easy on x86 since arguments are passed on the stack

• “Return Oriented Programming”

 7

Computer Science 161 Fall 2019 Weaver

W^X is Somewhat Ubiquitous As Well: 
Playing games with the page table...
• The OS enforces a simple rule: 

By default, a memory page may be writeable or executable but not both!

• Effectively no performance impact

• Synergistic interaction with ASLR

• Does break some code…

• Stuff which dynamically generates code on the fly and doesn’t know about W^X. So

basically stuff that deserves to break

• FreeBSD deployed in 2003, Windows in 2004

• But don’t always have apps supporting it!

• Yet still often not ubiquitous on embedded systems

• See “Internet of Shit”, Cisco ASA security appliances…

 8

Computer Science 161 Fall 2019 Weaver

Return Oriented Programming...

• The deep-voodoo idea:

• Given a code library, find a set of fragments (gadgets) that when called together

execute the desired function

• The "ROP Chain"

• Inject into memory a sequence of saved "return addresses" that will invoke this

• The lazy-hacker idea:

• Somebody else did the deep voodoo already. I can just google for "ROP

compiler" and download an existing tool

• Tools democratize things for attacker's:

• Yesterday's Ph.D. thesis or academic paper is today's Intelligence Agency tool

and tomorrow's Script Kiddie download
 9

Computer Science 161 Fall 2019 Weaver

Address Space Layout Randomization

• Start things more randomly

• Especially on 64b operating systems with 64b memory space: 

64b operating systems tend to be significantly harder to exploit

• Randomly relocate everything:

• Every library, the start of the stack & heap, etc…

• With 64b of space you have lots of entropy

• Everything needs to be relocatable anyway: 

Modern systems use relocatable code and link at runtime

• 32b? Not-so-much

• When combined with W^X, need an information leak

• Often a separate vulnerability, such as a way to find the address of a function

• To find the magic offset needed to modify your ROP chain

 10

Computer Science 161 Fall 2019 Weaver

ASLR Efficiency...

• The modern OS already has to relocate everything

• Dynamically load all the desired libraries

• So additional overhead is effectively 0!

• Just instead of putting things in a sequential order, you just randomize how

things are...

• But you need to be page aligned

• So well less than the full entropy of the memory space: 

This is why it is much more effective on a 64b architecture... 
32b architecture you may have low enough entropy that an attacker can
brute force things

 11

Computer Science 161 Fall 2019 Weaver

Defense In Depth in Practice: 
Attacker Requirements...
• Attacker first needs to discover a way to read memory

• Just a single pointer to a known library will do, however

• The return address off the stack is often a great candidate

• Or a vtable pointer for an object of a known type

• Armed with this, the attacker now can create a ROP chain

• Since the attacker has a copy of the library of their own and has already

passed it through a ROP compiler, it just needs to know the starting point for
the library

• Now the attacker needs to write memory

• Writes the ROP chain and overwrites a control flow pointer

 12

Computer Science 161 Fall 2019 Weaver

These Defenses-In-Depth in Practice...

• Apple iOS uses ASLR in the kernel and userspace, W^X whenever possible

• All applications are sandboxed to limit their damage: The kernel is the TCB

• The "Trident" exploit was used by a spyware vendor, the NSO group, to exploit
iPhones of targets

• So to remotely exploit an iPhone, the NSO group's exploit had to...

• Exploit Safari with a memory corruption vulnerability

• Gains remote code execution within the sandbox: write to a R/W/X page as part of the JavaScript JIT

• Exploit a vulnerability to read a section of the kernel stack

• Saved return address & knowing which function called breaks the ASLR

• Exploits a vulnerability in the kernel to enable code execution

• Full details:  
https://info.lookout.com/rs/051-ESQ-475/images/pegasus-exploits-technical-
details.pdf

 13

Computer Science 161 Fall 2019 Weaver

Safari Exploit: 
More Details
• Basic idea: can corrupt a JavaScript object (due to interaction

with garbage collector) to trigger a use-after-free issue

• Attacker JavaScript has access to both objects that share the same memory:

• Newly allocated object is an array of integers

• Old object changes the length of the array to be 0xFFFFFFFF

• Now attacker has a "read/write" primitive

• The array can see a huge fraction of the memory space

• First thing, find out the offset of the array itself, then any other magic numbers needed

• Turning it into execution

• Take another JavaScript object that will get compiled (the "Just In Time" compiler)...

• That object's code pointer will point into space that is writeable and executable

 14

Computer Science 161 Fall 2019 Weaver

Coming Down The Pipe: 
Selfrando...
• Don't just randomize the location of all libraries...

• Randomize the location of every function within the library!

• Slows down program loading considerably, unlike ASLR

• It works, but...

• To construct a ROP chain you may need more addresses, but...

• If you have an arbitrary read primitive, you can get that, it is just more tedious

 15

Computer Science 161 Fall 2019 Weaver

Why does software have vulnerabilities?

• Programmers are humans. 
And humans make mistakes.

• Use tools 

• Programmers often aren’t security-aware.

• Learn about common types of security flaws. 

• Programming languages aren’t designed well
for security.

• Use better languages (Java, Python, …).

 16

Computer Science 161 Fall 2019 Weaver

Testing for Software Security Issues

• What makes testing a program for security problems difficult?

• We need to test for the absence of something

• Security is a negative property!

• “nothing bad happens, even in really unusual circumstances”

• Normal inputs rarely stress security-vulnerable code

• How can we test more thoroughly?

• Random inputs (fuzz testing)

• Mutation

• Spec-driven

• Test corner cases

• How do we tell when we’ve found a problem?

• Crash or other deviant behavior

• How do we tell that we’ve tested enough?

• Hard: but code-coverage tools can help

 17

Disney's  
Newest 

Princess!

Computer Science 161 Fall 2019 Weaver

Working Towards Secure Systems

• Along with securing individual components, we need to
keep them up to date …

• What’s hard about patching?

• Can require restarting production systems

• Can break crucial functionality

 18

Computer Science 161 Fall 2019 Weaver

 19

Computer Science 161 Fall 2019 Weaver

Working Towards Secure Systems

• Along with securing individual components, we need to
keep them up to date …

• What’s hard about patching?

• Can require restarting production systems

• Can break crucial functionality

• Management burden:

• It never stops (the “patch treadmill”) …

 20

Computer Science 161 Fall 2019 Weaver

 21

Computer Science 161 Fall 2019 Weaver

Working Towards Secure Systems

• Along with securing individual components, we need to keep them up
to date …

• What’s hard about patching?

• Can require restarting production systems

• Can break crucial functionality

• Management burden:

• It never stops (the “patch treadmill”) …

• … and can be difficult to track just what’s needed where

• Other (complementary) approaches?

• Vulnerability scanning: probe your systems/networks for known flaws

• Penetration testing (“pen-testing”): pay someone to break into your systems …

• … provided they take excellent notes about how they did it!

 22

Computer Science 161 Fall 2019 Weaver

 23

Computer Science 161 Fall 2019 Weaver

Some Approaches for 
Building Secure Software/Systems
• Run-time checks

• Automatic bounds-checking (overhead)

• What do you do if check fails? Probably controlled crash...

• Address randomization

• Make it hard for attacker to determine layout

• But they might get lucky / sneaky

• Non-executable stack, heap

• May break legacy code

• See also Return-Oriented Programming (ROP)

• Monitor code for run-time misbehavior

• E.g., illegal calling sequences

• But again: what do you if detected?

 24

Computer Science 161 Fall 2019 Weaver

Approaches for Secure Software, con’t

• Program in checks / “defensive programming”

• E.g., check for null pointer even though sure pointer will be valid

• Relies on programmer discipline

• Use safe libraries

• E.g. strlcpy, not strcpy; snprintf, not sprintf

• Relies on discipline or tools …

• Bug-finding tools

• Excellent resource as long as not many false positives

• Code review

• Can be very effective … but expensive

 25

Computer Science 161 Fall 2019 Weaver

Approaches for Secure Software, con’t

• Use a safe language

• E.g., Java, Python, C#, Go, Rust

• Safe = memory safety, strong typing, hardened libraries

• Installed base? Programmer base? Performance?

• Structure user input

• Constrain how untrusted sources can interact with the system

• Really key later when we get to SQL injection...

• Perhaps by implementing a reference monitor

• Contain potential damage

• E.g., run system components in jails or VMs

• Think about privilege separation

 26

Computer Science 161 Fall 2019 Weaver

Real World Security: Securing your cellphone...

Look on the back:
• Does it say "iPhone"?

• Keep it up to date and be happy

• Does it say "Nexus" or "Pixel"?

• Keep it up to date and be happy

• Does it say anything else?

• Toss it in the trash and buy an iPhone or a Pixel

• Why? The Android Patch Model...

• "Imagine if your Windows update needed to be approved by Intel, Dell, and

Comcast... And none of them cared or had a reason to care"
 27

Computer Science 161 Fall 2019 Weaver

Cryptography: 
Philosophy...
• This part of the class is really don't try this at home

• It is incredibly easy to screw this stuff up

• It isn't just a matter of making encryption algorithms...

• Unless your name is David Wagner or Ralcua Popa, your crypto is broken!

• It isn't just a matter of coding good algorithms...

• Although just writing 100% correct code normally is hard enough!

• There is all sorts of deep voodoo that, 
when you screw up your security breaks

• EG, bad random number generators, side channel  

attacks, reusing one-use-only items, replay attacks,  
downgrade attacks, you name it...

 28

Computer Science 161 Fall 2019 Weaver

Three main goals

• Confidentiality: preventing adversaries from reading our
private data

• Data = message or document

• Integrity: preventing attackers from altering our data

• Data itself might or might not be private

• Authentication: proving who created a given message or
document

• Generally implies/requires integrity

 29

Computer Science 161 Fall 2019 Weaver

Special guests

• Alice (sender of messages)

• Bob (receiver of messages)

• The attackers

• Eve: “eavesdropper”

• Mallory: “manipulator”

 30

Eve

Computer Science 161 Fall 2019 Weaver

 31

Mi: ith message
of plaintext

Alice Bob

Eve

E(Mi, K)
Ci: ith message
of ciphertext D(Ci, K)

K K

Ci

Mi

Mi?

E(Mi, K) and D(Ci, K) are
inverses for the same K

“Symmetric key encryption”

Confidentiality

Computer Science 161 Fall 2019 Weaver

The Ideal Contest

• Attacker’s goal: any knowledge of Mi beyond an upper
bound on its length

• Slightly better than 50% probability at guessing a single bit: attacker wins!

• Any notion of how Mi relates to Mj: attacker wins!

• Defender’s goal: ensure attacker has no reason to think any
M' ∈ {0,1}n is more likely than any other

• (for Mi of length n)

 32

Computer Science 161 Fall 2019 Weaver

Eve’s Capabilities/Foreknowledge

• No knowledge of K

• We assume K is selected by a truly random process

• For b-bit key, any K ∈ {0,1}b is equally likely

• Recognition of success: Eve can generally tell if she has
correctly and fully recovered Mi

• But: Eve cannot recognize anything about partial solutions, such as whether
she has correctly identified a particular bit in Mi

• There are some attacks where Eve can guess and verify

• Does not apply to scenarios where Eve exhaustively examines every possible

Mi' ∈ {0,1}n
 33

Computer Science 161 Fall 2019 Weaver

Eve’s Available Information

1.Ciphertext-only attack:

• Eve gets to see every instance of Ci

• Variant: Eve may also have partial information about Mi

• “It’s probably English text”

• Bob is Alice’s stockbroker, so it’s either “Buy!” or “Sell”

2.Known plaintext:

• Eve knows part of Mi and/or entire other Mjs

• How could this happen?

• Encrypted HTTP request: starts with “GET”

• Eve sees earlier message she knows Alice will send to Bob

• Alice transmits in the clear and then resends encrypted

• Alex the Nazi always transmits the weather report at the 

same time of day, with the word "Wetter" in a known position
 34

Computer Science 161 Fall 2019 Weaver

Eve’s Available Information, con’t

3.Chosen plaintext

• Eve gets Alice to send Mj’s of Eve’s choosing

• How can this happen?

• E.g. Eve sends Alice an email spoofed from Alice’s boss saying “Please securely forward this to Bob”

• E.g. Eve has some JavaScript running in Alice's web browser that is contacting Bob's TLS web server

4.Chosen ciphertext:

• Eve tricks Bob into decrypting some Cj' of her  

choice and he reveals something about the result

• How could this happen?

• E.g. repeatedly send ciphertext to a web server that will  

send back different-sized messages depending on whether  
ciphertext decrypts into something well-formatted

• Or: measure how long it takes Bob to decrypt & validate
 35

Computer Science 161 Fall 2019 Weaver

Eve’s Available Information, con’t

5.Combinations of the above

• Ideally, we’d like to defend against this last, the most

powerful attacker

• And: we can!, so we’ll mainly focus on this attacker when

discussing different considerations

 36

Computer Science 161 Fall 2019 Weaver

Independence Under Chosen Plaintext Attack  
game: IND-CPA
• Eve is interacting with an encryption "Oracle"

• Oracle has an unknown random key k

• She can provide two separate chosen plaintexts of the
same length

• Oracle will randomly select one to encrypt with the unknown key

• The game can repeat, with the oracle using the same key...

• Goal of Eve is to have a better than random chance of
guessing which plaintext the oracle selected

• Variations involve the Oracle always selecting either the first or the second
 37

Computer Science 161 Fall 2019 Weaver

Designing Ciphers

• Clearly, the whole trick is in the design of E(M,K) and D(C,K)

• One very simple approach: 
	E(M,K) = ROTK(M); D(C,K) = ROT-K(C) 
i.e., take each letter in M and “rotate” it K positions (with wrap-around)
through the alphabet

• E.g., Mi = “DOG”, K = 3 
 Ci = E(Mi,K) = ROT3(“DOG”) = “GRJ” 
 D(Ci,K) = ROT-3(“GRJ”) = “DOG”

• “Caesar cipher”

• "This message has been encrypted twice by ROT-13 for 

your protection"
 38

Computer Science 161 Fall 2019 Weaver

Attacks on Caesar Ciphers?

• Brute force: try every possible value of K

• Work involved?

• At most 26 “steps”

 39

Computer Science 161 Fall 2019 Weaver

Attacks on Caesar Ciphers?

• Brute force: try every possible value of K

• Work involved?

• At most 26 “steps”

• Deduction:

• Analyze letter frequencies (“ETAOIN SHRDLU”)

• Known plaintext / guess possible words & confirm

• E.g. “JCKN ECGUCT” =?

 40

Computer Science 161 Fall 2019 Weaver

Attacks on Caesar Ciphers?

• Brute force: try every possible value of K

• Work involved?

• At most 26 “steps”

• Deduction:

• Analyze letter frequencies (“ETAOIN SHRDLU”)

• Known plaintext / guess possible words & confirm

• E.g. “JCKN ECGUCT” =? “HAIL CAESAR”

 41

Computer Science 161 Fall 2019 Weaver

Attacks on Caesar Ciphers?

• Brute force: try every possible value of K

• Work involved?

• At most 26 “steps”

• Deduction:

• Analyze letter frequencies (“ETAOIN SHRDLU”)

• Known plaintext / guess possible words & confirm

• E.g. “JCKN ECGUCT” =? “HAIL CAESAR” ⇒ K=2

• Chosen plaintext

• E.g. Have your spy ensure that the general will send “ALL QUIET”, 

observe “YJJ OSGCR” ⇒ K=24

• Is this IND-CPA?
 42

Computer Science 161 Fall 2019 Weaver

Kerckhoffs’ Principle

• Cryptosystems should remain secure even when attacker
knows all internal details

• Don’t rely on security-by-obscurity

• Key should be only thing that must stay secret

• It should be easy to change keys

• Actually distributing these keys is hard, but  

we will talk about that particular problem later.

• But key distribution is one of the real...

 43

Computer Science 161 Fall 2019 Weaver

Better Versions of Rot-K ?

• Consider E(M,K) = Rot-{K1, K2, …, Kn}(M)

• i.e., rotate first character by K1, second character by K2, up through nth character. Then start

over with K1, ...

• K = { K1, K2, ..., Kn }

• How well do previous attacks work now?

• Brute force: key space is factor of 26(n-1) larger

• E.g., n = 7 ⇒ 300 million times as much work

• Letter frequencies: need more ciphertext to reason about

• Known/chosen plaintext: works just fine

• Can go further with “chaining”, e.g., 2nd rotation depends on K2 and first
character of ciphertext

• We just described 2,000 years of cryptography

 44

Computer Science 161 Fall 2019 Weaver

And Cryptanalysis: 
ULTRA
• During WWII, the Germans used enigma:

• System was a "rotor machine": A series of rotors, with each

rotor permuting the alphabet and every keypress incrementing
the settings

• Key was the selection of rotors, initial settings, and a permutation
plugboard

• A great graphical demonstration: 
https://observablehq.com/@tmcw/enigma-machine

• The British built a system (the "Bombe") to brute-
force Enigma

• Required a known-plaintext (a "crib") to verify decryption: e.g.

the weather report

• Sometimes the brits would deliberately "seed" a naval

minefield for a chosen-plaintext attack
 45

