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Crypto: 
Block Ciphers
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Independence Under Chosen Plaintext Attack  
game: IND-CPA
• Eve is interacting with an encryption "Oracle"

• Oracle has an unknown random key k


• She can provide two separate chosen plaintexts of the 
same length


• Oracle will randomly select one to encrypt with the unknown key

• The game can repeat, with the oracle using the same key...


• Goal of Eve is to have a better than random chance of 
guessing which plaintext the oracle selected


• Variations involve the Oracle always selecting either the first or the second
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Designing Ciphers

• Clearly, the whole trick is in the design of E(M,K) and D(C,K)

• One very simple approach: 
	E(M,K) = ROTK(M); D(C,K) = ROT-K(C) 
i.e., take each letter in M and “rotate” it K positions (with wrap-around) 
through the alphabet


• E.g., Mi = “DOG”, K = 3 
  Ci = E(Mi,K) = ROT3(“DOG”) = “GRJ” 
  D(Ci,K) = ROT-3(“GRJ”) = “DOG”


• “Caesar cipher”

• "This message has been encrypted twice by ROT-13 for 

your protection"
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Attacks on Caesar Ciphers?

• Brute force: try every possible value of K

• Work involved?

• At most 26 “steps”
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Attacks on Caesar Ciphers?

• Brute force: try every possible value of K

• Work involved?

• At most 26 “steps”


• Deduction:

• Analyze letter frequencies (“ETAOIN SHRDLU”)

• Known plaintext / guess possible words & confirm

• E.g. “JCKN ECGUCT” =? 
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Attacks on Caesar Ciphers?

• Brute force: try every possible value of K

• Work involved?

• At most 26 “steps”


• Deduction:

• Analyze letter frequencies (“ETAOIN SHRDLU”)

• Known plaintext / guess possible words & confirm

• E.g. “JCKN ECGUCT” =? “HAIL CAESAR”
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Attacks on Caesar Ciphers?

• Brute force: try every possible value of K

• Work involved?

• At most 26 “steps”


• Deduction:

• Analyze letter frequencies (“ETAOIN SHRDLU”)

• Known plaintext / guess possible words & confirm

• E.g. “JCKN ECGUCT” =? “HAIL CAESAR” ⇒ K=2


• Chosen plaintext

• E.g. Have your spy ensure that the general will send “ALL QUIET”, 

observe “YJJ OSGCR” ⇒ K=24


• Is this IND-CPA?
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Kerckhoffs’ Principle

• Cryptosystems should remain secure even when attacker 
knows all internal details


• Don’t rely on security-by-obscurity


• Key should be only thing that must stay secret

• It should be easy to change keys

• Actually distributing these keys is hard, but  

we will talk about that particular problem later.

• But key distribution is one of the real...
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Better Versions of Rot-K ?

• Consider E(M,K) = Rot-{K1, K2, …, Kn}(M)

• i.e., rotate first character by K1, second character by K2, up through nth character.  Then start over with K1, ...

• K = { K1, K2, ..., Kn }


• How well do previous attacks work now?

• Brute force: key space is factor of 26(n-1) larger

• E.g., n = 7 ⇒ 300 million times as much work


• Letter frequencies: need more ciphertext to reason about

• Known/chosen plaintext: works just fine


• Can change it so that it is a substitution

• EG, A->C, B->Z, C->F…

• Can layer substitutions…


• Can go further with “chaining”, e.g., 2nd permutation depends on K2 and first character 
of ciphertext

• We just described 2,000 years of cryptography
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And Cryptanalysis: 
ULTRA
• During WWII, the Germans used enigma:

• System was a "rotor machine": A series of rotors, with each 

rotor permuting the alphabet and every keypress incrementing 
the settings


• Key was the selection of rotors, initial settings, and a permutation 
plugboard


• A great graphical demonstration: 
https://observablehq.com/@tmcw/enigma-machine


• The British built a system (the "Bombe") to brute-
force Enigma

• Required a known-plaintext (a "crib") to verify decryption: e.g. 

the weather report

• Sometimes the brits would deliberately "seed" a naval 

minefield for a chosen-plaintext attack
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One-Time Pad

• Idea #1: use a different key for each message M

• Different = completely independent

• So: known plaintext, chosen plaintext, etc., don’t help attacker


• Idea #2: make the key as long as M

• E(M,K) = M ⊕ K   (⊕ = XOR) 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⊕ 0 1
0 0 1
1 1 0

X ⊕ 0 = X    
X ⊕ X = 0     

X ⊕ Y = Y ⊕ X
X ⊕ (Y ⊕ Z) = (X ⊕ Y) ⊕ Z
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One-Time Pad

• Idea #1: use a different key for each message M

• Different = completely independent

• So: known plaintext, chosen plaintext, etc., don’t help attacker


• Idea #2: make the key as long as M

• E(M,K) = M ⊕ K   (⊕ = XOR) 

D(C,K) = C ⊕ K 
  = M ⊕ K ⊕ K =  M ⊕ 0 =  M
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⊕ 0 1
0 0 1
1 1 0

X ⊕ 0 = X    
X ⊕ X = 0     

X ⊕ Y = Y ⊕ X
X ⊕ (Y ⊕ Z) = (X ⊕ Y) ⊕ Z
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One-Time Pad: Provably Secure!

• Let’s assume Eve has partial information about M

• We want to show: from C, she does not gain any further 

information

• Formalization: supposed Alice sends either M' or M''

• Eve doesn’t know which; tries to guess based on C


• Proof:

• For random, independent K, all possible bit-patterns for C are equally likely

• This holds regardless of whether Alice chose M' or M'', or even if Eve provides M' and 

M'' to Alice and Alice selects which one (IND-CPA)

• Thus, observing a given C does not help Eve narrow down the possibilities in any way:
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One-Time Pad: Provably Impractical!

• Problem #1: key generation

• Need truly random, independent keys


• Problem #2: key distribution

• Need to share keys as long as all 

possible communication

• If we have a secure way to establish 

such keys, just use that for  
communication in the first place!


• Only advantage is you can communicate the 
key in advance: you may have the secure 
channel now but won't have it later
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Two-Time Pad?

• What if we reuse a key K jeeeest once?

• Alice sends C = E(M, K) and C' = E(M', K) 
• Eve observes M ⊕ K and M' ⊕ K

• Can she learn anything about M and/or M' ?


• Eve computes C ⊕ C' = (M ⊕ K) ⊕ (M' ⊕ K) 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Two-Time Pad?

• What if we reuse a key K jeeeest once?

• Alice sends C = E(M, K) and C' = E(M', K) 
• Eve observes M ⊕ K and M' ⊕ K 
• Can she learn anything about M and/or M' ?


• Eve computes C ⊕ C' = (M ⊕ K) ⊕ (M' ⊕ K) 
	= (M ⊕ M') ⊕ (K ⊕ K) 
	= (M ⊕ M') ⊕ 0 
	= M ⊕ M' 

• Now she knows which bits in M match bits in M'

• And if Eve already knew M, now she knows M'!

• Even if not, Eve can guess M and ensure that M' is consistent
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VENONA: 
Pad Reuse in the Real World
• The Soviets used one-time pads for  

communication from their spies in the US

• After all, it is provably secure!


• During WWII, the Soviets started reusing 
key material

• Uncertain whether it was just the cost of generating pads or what...


• VENONA was a US cryptanalysis project designed to  
break these messages

• Included confirming/identifying the spies targeting the  

US Manhattan project

• Project continued until 1980!


• Not declassified until 1995! 
• So secret even President Truman wasn't informed about it.

• But the Soviets found out about it in 1949, but their one-time  

pad reuse was fixed after 1948 anyway
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Modern Encryption: 
Block cipher
• A function E : {0, 1}b ×{0, 1}k → {0, 1}b. Once we fix the key K (of size k bits), 

we get: 

• EK : {0,1}b → {0,1}b   denoted by EK(M) = E(M,K).

• (and also D(C,K), E(M,K)’s inverse)


• Three properties:

• Correctness:

• EK(M) is a permutation (bijective function) on b-bit strings

• Bijective ⇒ invertible


• Efficiency: computable in 𝜇sec’s


• Security:

• For unknown K, “behaves” like a random permutation


• Provides a building block for more extensive encryption
 19
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DES (Data Encryption Standard)

• Designed in late 1970s

• Block size 64 bits, key size 56 bits

• NSA influenced two facets of its design

• Altered some subtle internal workings in a mysterious way

• Reduced key size 64 bits ⇒ 56 bits


• Made brute-forcing feasible for attacker with massive (for the time) computational resources


• Remains essentially unbroken 40 years later!

• The NSA’s tweaking hardened it against an attack “invented” a decade later


• However, modern computer speeds make it completely unsafe due 
to small key size

 20
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Today’s Go-To Block Cipher: 
AES (Advanced Encryption Standard)
• 20 years old, standardized 15 years ago...

• Block size 128 bits

• Key can be 128, 192, or 256 bits

• 128 remains quite safe; sometimes termed “AES-128”, 

paranoids use 256b


• As usual, includes encryptor and (closely-related) decryptor

• How it works is beyond scope of this class… 

But if you are curious: http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html


• Not proven secure

• But no known flaws

• The NSA uses it for Top Secret communication with 256b keys: 

stuff they want to be secure for 40 years including possibly unknown breakthroughs!


• so we assume it is a secure block cipher
 21
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AES is also effectively free…

• Computational load is remarkably low

• Partially why it won the competition: 

There were 3 really good finalists from a performance viewpoint:  
Rijndael (the winner), Twofish, Serpent 
One OK: RC6 
One ugggly: Mars


• On any given computing platform: 
Rinjdael was never the fastest


• But on every computing platform: 
Rinjdael was always the second fastest


• And now CPUs include dedicated AES support
 22
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How Hard Is It To Brute-Force 128-bit Key?

• 2128 possibilities – well, how many is that?

• Handy approximation: 210 ≈ 103


• 2128 = 210*12.8 ≈ (103)12.8 ≲ (103)13 ≈ 1039

 23
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How Hard Is It To Brute-Force 128-bit Key?

• 2128 possibilities – well, how many is that?

• Handy approximation: 210 ≈ 103


• 2128 = 210*12.8 ≈ (103)12.8 ≲ (103)13 ≈ 1039


• Say we build massive hardware that can try 109 (1 billion) keys in 1 
nanosecond (a billionth of a second)

• So 1018 keys/sec

• Thus, we’ll need ≈ 1021 sec


•  How long is that?

• One year ≈ 3x107 sec

• So need ≈ 3x1013 years ≈ 30 trillion years
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What about a 256b key in a year?

• Time to start thinking in 
astronomical numbers:


• If each brute force device is 1mm3...

• We will need 1052 of these things...


• 1043 cubic meters...

• Or the volume of 7x1015 suns!

• Brute force is not a factor against 

modern block ciphers... 
IF the key is actually random!
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Issues When Using the Building Block

• Block ciphers can only encrypt messages of a certain size

• If M is smaller, easy, just pad it (more later)

• If M is larger, can repeatedly apply block cipher

• Particular method = a “block cipher mode”

• Tricky to get this right!


• If same data is encrypted twice, attacker knows it is the 
same


• Solution: incorporate a varying, known quantity (IV = “initialization vector”)
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Electronic Code Book (ECB) mode

• Simplest block cipher mode

• Split message into b-bit blocks P1, P2, …

• Each block is enciphered independently, separate from the 

other blocks 
	Ci = E(Pi, K)


• Since key K is fixed, each block is subject to the same 
permutation


• (As though we had a “code book” to map each possible input value to its 
designated output)
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P1 P2 P3

C1 C2 C3

ECB Encryption
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P1 P2 P3

C1 C2 C3

ECB Decryption

Problem: Relationships between Pi’s reflected in Ci’s
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IND-CPA and ECB?

• Of course not!

• M,M' is 2x the block length...

• M = all 0s

• M' = 0s for 1 block, 1s for the 2nd block


• This has catastrophic implications in the real world...
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Original image, RGB values split into a bunch of b-bit blocks
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Encrypted with ECB and interpreting ciphertext directly as RGB
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Later (identical) message again encrypted with ECB
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Building a Better Cipher Block Mode

• Ensure blocks incorporate more than just the plaintext to mask 
relationships between blocks.  Done carefully, either of these 
works:

• Idea #1: include elements of prior computation

• Idea #2: include positional information


• Plus: need some initial randomness

• Prevent encryption scheme from determinism revealing relationships between 

messages

• Introduce initialization vector (IV):

• IV is a public nonce, a use-once unique value:  Easiest way to get one is generate it randomly


• Example: Cipher Block Chaining (CBC)
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CBC Encryption

 35

P1 P2 P3

C1 C2 C3

E(Plaintext, K):   
• If b is the block size of the block cipher, split the plaintext 

in blocks of size b: P1, P2, P3,.. 
• Choose a random IV (do not reuse for other messages) 
• Now compute: 

• Final ciphertext is (IV, C1, C2, C3).  This is what Eve sees.
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CBC Decryption
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P1 P2 P3

C1 C2 C3

D(Ciphertext, K):   
• Take IV out of the ciphertext 
• If b is the block size of the block cipher, split the ciphertext 

in blocks of size b: C1, C2, C3, … 
• Now compute this: 

• Output the plaintext as the concatenation of P1, P2, P3, ...
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Original image, RGB values split into a bunch of b-bit blocks
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Encrypted with CBC: Should be indistinguishable from random noise
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CBC Mode...

• Widely used

• Issue: sequential encryption, can't parallelize encryption

• Must finish encrypting block b before starting b+1

• But you can parallelize decryption 

• Parallelizable alternative: CTR (Counter) mode

• Security: If no reuse of nonce, both are provably secure 

(IND-CPA) assuming the underlying block cipher is secure
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And padding…

• What happens if length(M) % BlockSize != 0?

• Need to “Pad” to add bits


• Two main options:

• Send the length at the start of the message…

• And then who cares what you add on at the end


• Use a padding scheme that you can add on to the end…


• EG, PKCS#7:

• If M % BlockSize == Blocksize - 1: Pad with 0x01

• If M % BlockSize == Blocksize - 2: Pad with 0x02 0x02 

….

• If M % BlockSize == 0: Pad a full block with the block size (so for AES 0x20 0x20…)
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CTR Mode Encryption

 41

(Nonce = Same as IV)

C1 C2 C3

P1 P2 P3

Important that nonce/IV does not 
repeat across different encryptions. 

Choose at random! 
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Counter Mode Decryption

 42

Note, CTR decryption uses block 
cipher’s encryption, not decryption

C1 C2 C3

P1 P2 P3
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Thoughts on CTR mode...

• CTR mode is actually a stream cipher (more on those later):

• You no longer need to worry about padding which is nice


• CTR mode is fully parallelizeable for encryption as well as 
decryption
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NEVER EVER EVER use CTR Mode! 
(Well, if you are paranoid…)
• What happens if you reuse the IV in CBC...

• Its bad but not catastrophic: 

you fail IND-CPA but the damage may be tolerable:

• M = {A,A,B} 

M' = {A,B,B} 
Adversary can see that the first part of M and M' are the same, but not the later part


• What happens if you reuse the IV in CTR mode?

• It is exactly like reusing a one-time pad!


• An example of a system which fails badly...

• CTR mode is theoretically as secure as CBC when 

used properly...

• But when it is misused it fails catastrophically: 

Personal bias:  I believe we need systems that are still  
robust when implemented incorrectly
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What To Use Then?

• What if you want a cipher mode where you don't need to 
pad (like CTR mode)?


• But you want the robust to screwup properties of CBC mode?


• Idea: lets do it CTR-like (xor plaintext with block cipher 
output), but...


• Instead of the next block input being an incremented 
counter... 
have the next block be the previous ciphertext


• Still lacks integrity however, we'll fix that next time...
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CFB Encryption

 46
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CFB Decryption

 47
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CFB doesn't need to pad...

• Since the encryption is XORed with the plaintext...

• You can end on a "short" block without a problem

• So more convenient than CBC mode


• But similar security properties as CBC mode

• Sequential encryption, parallel decryption

• Same error propagation effects

• Effectively the same for IND-CPA


• But a bit worse if you reuse the IV
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