
Computer Science 161 Fall 2019 Weaver

 1

Computer Science 161 Fall 2019 Weaver

Crypto: 
Block Ciphers

 2

Computer Science 161 Fall 2019 Weaver

Independence Under Chosen Plaintext Attack  
game: IND-CPA
• Eve is interacting with an encryption "Oracle"

• Oracle has an unknown random key k

• She can provide two separate chosen plaintexts of the
same length

• Oracle will randomly select one to encrypt with the unknown key

• The game can repeat, with the oracle using the same key...

• Goal of Eve is to have a better than random chance of
guessing which plaintext the oracle selected

• Variations involve the Oracle always selecting either the first or the second
 3

Computer Science 161 Fall 2019 Weaver

Designing Ciphers

• Clearly, the whole trick is in the design of E(M,K) and D(C,K)

• One very simple approach: 
	E(M,K) = ROTK(M); D(C,K) = ROT-K(C) 
i.e., take each letter in M and “rotate” it K positions (with wrap-around)
through the alphabet

• E.g., Mi = “DOG”, K = 3 
 Ci = E(Mi,K) = ROT3(“DOG”) = “GRJ” 
 D(Ci,K) = ROT-3(“GRJ”) = “DOG”

• “Caesar cipher”

• "This message has been encrypted twice by ROT-13 for 

your protection"
 4

Computer Science 161 Fall 2019 Weaver

Attacks on Caesar Ciphers?

• Brute force: try every possible value of K

• Work involved?

• At most 26 “steps”

 5

Computer Science 161 Fall 2019 Weaver

Attacks on Caesar Ciphers?

• Brute force: try every possible value of K

• Work involved?

• At most 26 “steps”

• Deduction:

• Analyze letter frequencies (“ETAOIN SHRDLU”)

• Known plaintext / guess possible words & confirm

• E.g. “JCKN ECGUCT” =?

 6

Computer Science 161 Fall 2019 Weaver

Attacks on Caesar Ciphers?

• Brute force: try every possible value of K

• Work involved?

• At most 26 “steps”

• Deduction:

• Analyze letter frequencies (“ETAOIN SHRDLU”)

• Known plaintext / guess possible words & confirm

• E.g. “JCKN ECGUCT” =? “HAIL CAESAR”

 7

Computer Science 161 Fall 2019 Weaver

Attacks on Caesar Ciphers?

• Brute force: try every possible value of K

• Work involved?

• At most 26 “steps”

• Deduction:

• Analyze letter frequencies (“ETAOIN SHRDLU”)

• Known plaintext / guess possible words & confirm

• E.g. “JCKN ECGUCT” =? “HAIL CAESAR” ⇒ K=2

• Chosen plaintext

• E.g. Have your spy ensure that the general will send “ALL QUIET”, 

observe “YJJ OSGCR” ⇒ K=24

• Is this IND-CPA?
 8

Computer Science 161 Fall 2019 Weaver

Kerckhoffs’ Principle

• Cryptosystems should remain secure even when attacker
knows all internal details

• Don’t rely on security-by-obscurity

• Key should be only thing that must stay secret

• It should be easy to change keys

• Actually distributing these keys is hard, but  

we will talk about that particular problem later.

• But key distribution is one of the real...

 9

Computer Science 161 Fall 2019 Weaver

Better Versions of Rot-K ?

• Consider E(M,K) = Rot-{K1, K2, …, Kn}(M)

• i.e., rotate first character by K1, second character by K2, up through nth character. Then start over with K1, ...

• K = { K1, K2, ..., Kn }

• How well do previous attacks work now?

• Brute force: key space is factor of 26(n-1) larger

• E.g., n = 7 ⇒ 300 million times as much work

• Letter frequencies: need more ciphertext to reason about

• Known/chosen plaintext: works just fine

• Can change it so that it is a substitution

• EG, A->C, B->Z, C->F…

• Can layer substitutions…

• Can go further with “chaining”, e.g., 2nd permutation depends on K2 and first character
of ciphertext

• We just described 2,000 years of cryptography

 10

Computer Science 161 Fall 2019 Weaver

And Cryptanalysis: 
ULTRA
• During WWII, the Germans used enigma:

• System was a "rotor machine": A series of rotors, with each

rotor permuting the alphabet and every keypress incrementing
the settings

• Key was the selection of rotors, initial settings, and a permutation
plugboard

• A great graphical demonstration: 
https://observablehq.com/@tmcw/enigma-machine

• The British built a system (the "Bombe") to brute-
force Enigma

• Required a known-plaintext (a "crib") to verify decryption: e.g.

the weather report

• Sometimes the brits would deliberately "seed" a naval

minefield for a chosen-plaintext attack
 11

Computer Science 161 Fall 2019 Weaver

One-Time Pad

• Idea #1: use a different key for each message M

• Different = completely independent

• So: known plaintext, chosen plaintext, etc., don’t help attacker

• Idea #2: make the key as long as M

• E(M,K) = M ⊕ K (⊕ = XOR) 

 12

⊕ 0 1
0 0 1
1 1 0

X ⊕ 0 = X
X ⊕ X = 0

X ⊕ Y = Y ⊕ X
X ⊕ (Y ⊕ Z) = (X ⊕ Y) ⊕ Z

Computer Science 161 Fall 2019 Weaver

One-Time Pad

• Idea #1: use a different key for each message M

• Different = completely independent

• So: known plaintext, chosen plaintext, etc., don’t help attacker

• Idea #2: make the key as long as M

• E(M,K) = M ⊕ K (⊕ = XOR) 

D(C,K) = C ⊕ K 
 = M ⊕ K ⊕ K = M ⊕ 0 = M

 13

⊕ 0 1
0 0 1
1 1 0

X ⊕ 0 = X
X ⊕ X = 0

X ⊕ Y = Y ⊕ X
X ⊕ (Y ⊕ Z) = (X ⊕ Y) ⊕ Z

Computer Science 161 Fall 2019 Weaver

One-Time Pad: Provably Secure!

• Let’s assume Eve has partial information about M

• We want to show: from C, she does not gain any further

information

• Formalization: supposed Alice sends either M' or M''

• Eve doesn’t know which; tries to guess based on C

• Proof:

• For random, independent K, all possible bit-patterns for C are equally likely

• This holds regardless of whether Alice chose M' or M'', or even if Eve provides M' and

M'' to Alice and Alice selects which one (IND-CPA)

• Thus, observing a given C does not help Eve narrow down the possibilities in any way:

 14

Computer Science 161 Fall 2019 Weaver

One-Time Pad: Provably Impractical!

• Problem #1: key generation

• Need truly random, independent keys

• Problem #2: key distribution

• Need to share keys as long as all 

possible communication

• If we have a secure way to establish 

such keys, just use that for  
communication in the first place!

• Only advantage is you can communicate the 
key in advance: you may have the secure 
channel now but won't have it later

 15

Computer Science 161 Fall 2019 Weaver

Two-Time Pad?

• What if we reuse a key K jeeeest once?

• Alice sends C = E(M, K) and C' = E(M', K)
• Eve observes M ⊕ K and M' ⊕ K

• Can she learn anything about M and/or M' ?

• Eve computes C ⊕ C' = (M ⊕ K) ⊕ (M' ⊕ K) 
	

 16

Computer Science 161 Fall 2019 Weaver

Two-Time Pad?

• What if we reuse a key K jeeeest once?

• Alice sends C = E(M, K) and C' = E(M', K)
• Eve observes M ⊕ K and M' ⊕ K
• Can she learn anything about M and/or M' ?

• Eve computes C ⊕ C' = (M ⊕ K) ⊕ (M' ⊕ K) 
	= (M ⊕ M') ⊕ (K ⊕ K) 
	= (M ⊕ M') ⊕ 0 
	= M ⊕ M'

• Now she knows which bits in M match bits in M'

• And if Eve already knew M, now she knows M'!

• Even if not, Eve can guess M and ensure that M' is consistent

 17

Computer Science 161 Fall 2019 Weaver

VENONA: 
Pad Reuse in the Real World
• The Soviets used one-time pads for  

communication from their spies in the US

• After all, it is provably secure!

• During WWII, the Soviets started reusing 
key material

• Uncertain whether it was just the cost of generating pads or what...

• VENONA was a US cryptanalysis project designed to  
break these messages

• Included confirming/identifying the spies targeting the  

US Manhattan project

• Project continued until 1980!

• Not declassified until 1995!
• So secret even President Truman wasn't informed about it.

• But the Soviets found out about it in 1949, but their one-time  

pad reuse was fixed after 1948 anyway
 18

Computer Science 161 Fall 2019 Weaver

Modern Encryption: 
Block cipher
• A function E : {0, 1}b ×{0, 1}k → {0, 1}b. Once we fix the key K (of size k bits),

we get:

• EK : {0,1}b → {0,1}b denoted by EK(M) = E(M,K).

• (and also D(C,K), E(M,K)’s inverse)

• Three properties:

• Correctness:

• EK(M) is a permutation (bijective function) on b-bit strings

• Bijective ⇒ invertible

• Efficiency: computable in 𝜇sec’s

• Security:

• For unknown K, “behaves” like a random permutation

• Provides a building block for more extensive encryption
 19

Computer Science 161 Fall 2019 Weaver

DES (Data Encryption Standard)

• Designed in late 1970s

• Block size 64 bits, key size 56 bits

• NSA influenced two facets of its design

• Altered some subtle internal workings in a mysterious way

• Reduced key size 64 bits ⇒ 56 bits

• Made brute-forcing feasible for attacker with massive (for the time) computational resources

• Remains essentially unbroken 40 years later!

• The NSA’s tweaking hardened it against an attack “invented” a decade later

• However, modern computer speeds make it completely unsafe due
to small key size

 20

Computer Science 161 Fall 2019 Weaver

Today’s Go-To Block Cipher: 
AES (Advanced Encryption Standard)
• 20 years old, standardized 15 years ago...

• Block size 128 bits

• Key can be 128, 192, or 256 bits

• 128 remains quite safe; sometimes termed “AES-128”, 

paranoids use 256b

• As usual, includes encryptor and (closely-related) decryptor

• How it works is beyond scope of this class… 

But if you are curious: http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html

• Not proven secure

• But no known flaws

• The NSA uses it for Top Secret communication with 256b keys: 

stuff they want to be secure for 40 years including possibly unknown breakthroughs!

• so we assume it is a secure block cipher
 21

Computer Science 161 Fall 2019 Weaver

AES is also effectively free…

• Computational load is remarkably low

• Partially why it won the competition: 

There were 3 really good finalists from a performance viewpoint:  
Rijndael (the winner), Twofish, Serpent 
One OK: RC6 
One ugggly: Mars

• On any given computing platform: 
Rinjdael was never the fastest

• But on every computing platform: 
Rinjdael was always the second fastest

• And now CPUs include dedicated AES support
 22

Computer Science 161 Fall 2019 Weaver

How Hard Is It To Brute-Force 128-bit Key?

• 2128 possibilities – well, how many is that?

• Handy approximation: 210 ≈ 103

• 2128 = 210*12.8 ≈ (103)12.8 ≲ (103)13 ≈ 1039

 23

Computer Science 161 Fall 2019 Weaver

How Hard Is It To Brute-Force 128-bit Key?

• 2128 possibilities – well, how many is that?

• Handy approximation: 210 ≈ 103

• 2128 = 210*12.8 ≈ (103)12.8 ≲ (103)13 ≈ 1039

• Say we build massive hardware that can try 109 (1 billion) keys in 1
nanosecond (a billionth of a second)

• So 1018 keys/sec

• Thus, we’ll need ≈ 1021 sec

• How long is that?

• One year ≈ 3x107 sec

• So need ≈ 3x1013 years ≈ 30 trillion years

 24

Computer Science 161 Fall 2019 Weaver

What about a 256b key in a year?

• Time to start thinking in
astronomical numbers:

• If each brute force device is 1mm3...

• We will need 1052 of these things...

• 1043 cubic meters...

• Or the volume of 7x1015 suns!

• Brute force is not a factor against

modern block ciphers... 
IF the key is actually random!

 25

Computer Science 161 Fall 2019 Weaver

Issues When Using the Building Block

• Block ciphers can only encrypt messages of a certain size

• If M is smaller, easy, just pad it (more later)

• If M is larger, can repeatedly apply block cipher

• Particular method = a “block cipher mode”

• Tricky to get this right!

• If same data is encrypted twice, attacker knows it is the
same

• Solution: incorporate a varying, known quantity (IV = “initialization vector”)

 26

Computer Science 161 Fall 2019 Weaver

Electronic Code Book (ECB) mode

• Simplest block cipher mode

• Split message into b-bit blocks P1, P2, …

• Each block is enciphered independently, separate from the

other blocks 
	Ci = E(Pi, K)

• Since key K is fixed, each block is subject to the same
permutation

• (As though we had a “code book” to map each possible input value to its
designated output)

 27

Computer Science 161 Fall 2019 Weaver

 28

P1 P2 P3

C1 C2 C3

ECB Encryption

Computer Science 161 Fall 2019 Weaver

 29

P1 P2 P3

C1 C2 C3

ECB Decryption

Problem: Relationships between Pi’s reflected in Ci’s

Computer Science 161 Fall 2019 Weaver

IND-CPA and ECB?

• Of course not!

• M,M' is 2x the block length...

• M = all 0s

• M' = 0s for 1 block, 1s for the 2nd block

• This has catastrophic implications in the real world...

 30

Computer Science 161 Fall 2019 Weaver

 31

Original image, RGB values split into a bunch of b-bit blocks

Computer Science 161 Fall 2019 Weaver

 32

Encrypted with ECB and interpreting ciphertext directly as RGB

Computer Science 161 Fall 2019 Weaver

 33

Later (identical) message again encrypted with ECB

Computer Science 161 Fall 2019 Weaver

Building a Better Cipher Block Mode

• Ensure blocks incorporate more than just the plaintext to mask
relationships between blocks. Done carefully, either of these
works:

• Idea #1: include elements of prior computation

• Idea #2: include positional information

• Plus: need some initial randomness

• Prevent encryption scheme from determinism revealing relationships between

messages

• Introduce initialization vector (IV):

• IV is a public nonce, a use-once unique value: Easiest way to get one is generate it randomly

• Example: Cipher Block Chaining (CBC)
 34

Computer Science 161 Fall 2019 Weaver

CBC Encryption

 35

P1 P2 P3

C1 C2 C3

E(Plaintext, K):
• If b is the block size of the block cipher, split the plaintext

in blocks of size b: P1, P2, P3,..
• Choose a random IV (do not reuse for other messages)
• Now compute:

• Final ciphertext is (IV, C1, C2, C3). This is what Eve sees.

Computer Science 161 Fall 2019 Weaver

CBC Decryption

 36

P1 P2 P3

C1 C2 C3

D(Ciphertext, K):
• Take IV out of the ciphertext
• If b is the block size of the block cipher, split the ciphertext

in blocks of size b: C1, C2, C3, …
• Now compute this:

• Output the plaintext as the concatenation of P1, P2, P3, ...

Computer Science 161 Fall 2019 Weaver

 37

Original image, RGB values split into a bunch of b-bit blocks

Computer Science 161 Fall 2019 Weaver

 38

Encrypted with CBC: Should be indistinguishable from random noise

Computer Science 161 Fall 2019 Weaver

CBC Mode...

• Widely used

• Issue: sequential encryption, can't parallelize encryption

• Must finish encrypting block b before starting b+1

• But you can parallelize decryption

• Parallelizable alternative: CTR (Counter) mode

• Security: If no reuse of nonce, both are provably secure 

(IND-CPA) assuming the underlying block cipher is secure

 39

Computer Science 161 Fall 2019 Weaver

And padding…

• What happens if length(M) % BlockSize != 0?

• Need to “Pad” to add bits

• Two main options:

• Send the length at the start of the message…

• And then who cares what you add on at the end

• Use a padding scheme that you can add on to the end…

• EG, PKCS#7:

• If M % BlockSize == Blocksize - 1: Pad with 0x01

• If M % BlockSize == Blocksize - 2: Pad with 0x02 0x02 

….

• If M % BlockSize == 0: Pad a full block with the block size (so for AES 0x20 0x20…)

 40

Computer Science 161 Fall 2019 Weaver

CTR Mode Encryption

 41

(Nonce = Same as IV)

C1 C2 C3

P1 P2 P3

Important that nonce/IV does not
repeat across different encryptions.

Choose at random!

Computer Science 161 Fall 2019 Weaver

Counter Mode Decryption

 42

Note, CTR decryption uses block
cipher’s encryption, not decryption

C1 C2 C3

P1 P2 P3

Computer Science 161 Fall 2019 Weaver

Thoughts on CTR mode...

• CTR mode is actually a stream cipher (more on those later):

• You no longer need to worry about padding which is nice

• CTR mode is fully parallelizeable for encryption as well as
decryption

 43

Computer Science 161 Fall 2019 Weaver

NEVER EVER EVER use CTR Mode! 
(Well, if you are paranoid…)
• What happens if you reuse the IV in CBC...

• Its bad but not catastrophic: 

you fail IND-CPA but the damage may be tolerable:

• M = {A,A,B} 

M' = {A,B,B} 
Adversary can see that the first part of M and M' are the same, but not the later part

• What happens if you reuse the IV in CTR mode?

• It is exactly like reusing a one-time pad!

• An example of a system which fails badly...

• CTR mode is theoretically as secure as CBC when 

used properly...

• But when it is misused it fails catastrophically: 

Personal bias: I believe we need systems that are still  
robust when implemented incorrectly

 44

Computer Science 161 Fall 2019 Weaver

What To Use Then?

• What if you want a cipher mode where you don't need to
pad (like CTR mode)?

• But you want the robust to screwup properties of CBC mode?

• Idea: lets do it CTR-like (xor plaintext with block cipher
output), but...

• Instead of the next block input being an incremented
counter... 
have the next block be the previous ciphertext

• Still lacks integrity however, we'll fix that next time...
 45

Computer Science 161 Fall 2019 Weaver

CFB Encryption

 46

Computer Science 161 Fall 2019 Weaver

CFB Decryption

 47

Computer Science 161 Fall 2019 Weaver

CFB doesn't need to pad...

• Since the encryption is XORed with the plaintext...

• You can end on a "short" block without a problem

• So more convenient than CBC mode

• But similar security properties as CBC mode

• Sequential encryption, parallel decryption

• Same error propagation effects

• Effectively the same for IND-CPA

• But a bit worse if you reuse the IV

 48

