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Announcements

• Midterm 1: September 23rd, 7-9pm

• Hearst Field Annex Room 1A

• Wheeler Auditorium


• How to know which room?

• Take your student ID in a text file with a single newline at the end

• Apply sha256 to it

• Write down the first 8 hex digits and bring them with you to the exam 

(You will be asked to provide them on the exam,  
so put them on your single-page, double sided, handwritten cheat sheet)

• DSP students, you still need to bring this with you even though you are going to a DSP room...


• If the first 2 hex digits are less than 0x38, go to Hearst Field Annex Room 1A

• Otherwise go to Wheeler


• No class on the 23rd

• Review session TBA
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Mallory the Manipulator

• Mallory is an active attacker

• Can introduce new messages (ciphertext)

• Can “replay” previous ciphertexts

• Can cause messages to be reordered or discarded


• A “Man in the Middle” (MITM) attacker

• Can be much more powerful than just eavesdropping
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Encryption Does Not Provide Integrity

• Simple example: Consider a block cipher in CTR mode...

• Suppose Mallory knows that Alice sends to Bob “Pay Mal 

$0100”.  Mallory intercepts corresponding C

• M = “Pay Mal $0100”.  C = “r4ZC#jj8qThMK”

• M10..13 = “0100”.  C10..13 = “ThMK”


• Mallory wants to replace some 
bits of C...
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Encryption Does Not Provide Integrity

• Mallory computes

• “0100” ⨁ C10..13

• Tells Mallory that section of the counter XOR: 

Remember that CTR mode computes Ek(IV||CTR) and XORs it with the corresponding 
part of the message


• C'10..13 = "9999" ⨁ “0100” ⨁ C10..13


• Mallory now forwards to Bob a full C' = C0..9||C'10..13||C14...

• Bob will decrypt the message as "Pay Mal $9999"...

• For a CTR mode cipher, Mallory can in general replace any known message 

M with a message M' of equal length!
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Integrity and Authentication

• Integrity: Bob can confirm that what he’s received is exactly the message M that 
was originally sent


• Authentication: Bob can confirm that what he’s received was indeed generated 
by Alice


• Reminder: for either, confidentiality may-or-may-not matter

• E.g. conf. not needed when Mozilla distributes a new Firefox binary


• Approach using symmetric-key cryptography:

• Integrity via MACs (which use a shared secret key K)

• Authentication arises due to confidence that only Alice & Bob have K


• Approach using public-key cryptography (later on):

• “Digital signatures” provide both integrity & authentication together


• Key building block: cryptographically strong hash functions
 6
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Hash Functions

• Properties

• Variable input size

• Fixed output size (e.g., 256 bits)

• Efficient to compute

• Pseudo-random (mixes up input extremely well) 

 

• Provides a “fingerprint” of a document

• E.g. “shasum -a 256 <exams/mt1-solutions.pdf” prints 

0843b3802601c848f73ccb5013afa2d5c4d424a6ef477890ebf8db9bc4f7d13d
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Cryptographically Strong Hash Functions

• A collision occurs if x≠y but  
Hash(x) = Hash(y) 
• Since input size > output size, collisions do 

happen


• A cryptographically strong Hash(x) 
provides three properties:

• One-way: h = Hash(x) easy to compute, but not 

to invert.

• Intractable to find any x' s.t. Hash(x') = h,  

for a given h

• Also termed “preimage resistant”
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Cryptographically Strong Hash Functions

• The other two properties of a cryptographically strong Hash(x):

• Second preimage resistant: given x, intractable to find x' s.t. Hash(x) = Hash(x')

• Collision resistant: intractable to find any x, y s.t. Hash(x) = Hash(y)


• Collision resistant ⟹ Second preimage resistant

• We consider them separately because given Hash might differ in how well it resists 

each 

• Also, the Birthday Paradox means that for n-bit Hash, finding x-y pair takes only ≈ 2n/2 

pairs

• Vs. potentially 2n tries for x': Hash(x) = Hash(x') for given x


• Plus a hash function should look "random"

• A "PRF" or Pseudo-Random Function
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Cryptographically Strong Hash Functions, con’t

• Some contemporary hash functions

• MD5: 128 bits 

• broken – lack of collision resistance

• Collisions for the heck of it: https://shells.aachen.ccc.de/~spq/md5.gif  

An MD5 "hash quine": an animated GIF that shows its own hash

• SHA-1: 160 bits broken spring 2017, but was known to be weak yet still used...

• SHA-256/SHA-384/SHA-512: 256, 384, 512 bits in the SHA-2 family, at least not currently broken

• SHA-3: New standard!  Yayyy!!!!  (Based on Keccak, again 256b, 384b, and 512b options)


• Provide a handy way to unambiguously refer to large documents

• If hash can be securely communicated, provides integrity

• E.g. Mozilla securely publishes SHA-256(new FF binary)

• Anyone who fetches binary can use “cat binary | shasum -a 256” to confirm it’s the right one, untampered


• Not enough by themselves for integrity, since functions are completely known – 
Mallory can just compute revised hash value to go with altered message
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SHA-256...

• SHA-256/SHA-384 are two parameters for the SHA-2 hash 
algorithm, returning 256b or 384b hashes


• Works on blocks with a truncation routine to make it act on sequences of 
arbitrary length


• Is vulnerable to a length-extension attack: s is secret

• Mallory knows len(s), H(s) 
• Mallory can use this to calculate H(s||M) for an M of Mallory's construction

• Works because all the internal state at the point of calculating H(s||...) is derivable 

from H(s) and len(s)


• New SHA-3 standard (Keccak) does not have this property
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Stupid Hash Tricks: 
Sample A File...
• BlackHat Dude claims to have 150M records stolen from 

Equifax...

• How can I as a reporter verify this?


• Idea:  If I can have the hacker select 10 random lines...

• And in selecting them also say something about the size of the file...

• Voila!  Verify those lines and I now know he's not full of BS


• Can I use hashing to write a small script which the BlackHat 
Dude can run?

• Where I can easily verify that the 10 lines were sampled at random, and can't 

be faked?
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Sample a File
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#!/usr/bin/env python 
import hashlib, sys 
hashes = {} 

for line in sys.stdin: 
    line = line.strip() 
    for x in range(10): 
        tmp = "%s-%i" % (line, x) 
        hashval = hashlib.sha256(tmp) 
        h = hashval.digest() 
        if x not in hashes or hashes[x][0] > h: 
            hashes[x] = (h, hashval, tmp) 

for x in range(10): 
    h, hashval, val = hashes[x] 
    print "%s=\"%s\"" % (hashval.hexdigest(), val)
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Why does this work?

• For each x in range 0-9...

• Calculates H(line||x)

• Stores the lowest hash matching so far


• Since the hash appears random...

• Each iteration is an independent sample from the file

• The expected value of H(line||x) is a function of the size of the file: 

More lines, and the value is smaller


• To fake it...

• Would need to generate fake lines, and see if the hash is suitably low

• Yet would need to make sure these fake lines semantically match!

• Thus you can't just go "John Q Fake", "John Q Fakke", "Fake, John Q", etc...
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Message Authentication Codes (MACs)

• Symmetric-key approach for integrity

• Uses a shared (secret) key K 


• Goal: when Bob receives a message, can confidently determine it hasn’t 
been altered

• In addition, whomever sent it must have possessed K 

	 (⇒ message authentication, sorta...)


• Conceptual approach:

• Alice sends {M, T} to Bob, with tag T = MAC(K, M)

• Note, M could instead be C = EK'(M), but not required


• When Bob receives {M', T'}, Bob checks whether T' = MAC(K, M')

• If so, Bob concludes message untampered, came from Alice

• If not, Bob discards message as tampered/corrupted
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Requirements for Secure MAC Functions

• Suppose MITM attacker Mallory intercepts Alice’s {M, T} transmission …

• … and wants to replace M with altered M* 
• … but doesn’t know shared secret key K


• We have secure integrity if MAC function 
T = MAC(M, K) has two properties:

• Mallory can’t compute T* = MAC(M*, K)

• Otherwise, could send Bob {M*, T*} and fool him


• Mallory can’t find M** such that MAC(M**, K) = T

• Otherwise, could send Bob {M**, T} and fool him


• These need to hold even if Mallory can observe many {Mi, Ti} pairs, 
including for Mi’s she chose

 16
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MAC then Encrypt or  
Encrypt then MAC
• You should never use the same key for the MAC and the Encryption

• Some MACs will break completely if you reuse the key

• Even if it is probably safe (eg, AES for encryption, HMAC for MAC) its still a bad idea


• MAC then Encrypt:

• Compute T = MAC(M,Kmac), send C = E(M||T,Kencrypt)


• Encrypt then MAC:

• Compute C = E(M,Kencrypt), T = MAC(M,Kmac),  

send C||T


• Theoretically they are the same, but...

• Once again, its time for ...
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HTTPS Authentication in 
Practice
• When you log into a web site, it sets a "cookie" in your browser

• All subsequent requests include this cookie so the web server knows who you are


• If an attacker can get your cookie...

• They can impersonate you on the "Secure" site


• And the attacker can create multiple  
tries

• On a WiFi network, inject a bit of JavaScript 

that repeatedly connects to the site

• While as a man-in-the-middle to manipulate  

connections

 18
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The TLS 1.0 "Lucky13" Attack: 
"F-U, This is Cryptography"
• HTTPS/TLS uses MAC then Encrypt

• With CBC encryption


• The Lucky13 attack changes the cipher text in an attempt to discover the 
state of a byte

• But can't predict the MAC

• The TLS connection retries after each failure so the attacker can try multiple times

• Goal is to determine the status each byte in the authentication cookie which is in a known position


• It detects the timing of the error response

• Which is different if the guess is right or wrong

• Even though the underlying algorithm was "proved" secure!


• So always do Encrypt then MAC since,  
once again, it is more mistake tolerant
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The best MAC construction: 
HMAC
• Idea is to turn a hash function into a MAC

• Since hash functions are often much  

faster than encryption

• While still maintaining the properties of  

being a cryptographic hash


• Reduce/expand the key to a  
single hash block


• XOR the key with the i_pad

• 0x363636... (one hash block long)


• Hash ((K ⊕ i_pad) || message)

• XOR the key with the o_pad

• 0x5c5c5c...


• Hash ((K ⊕ o_pad) || first hash)
 20

function hmac (key, message) { 
    if (length(key) > blocksize) { 
        key = hash(key) 
    } 
    while (length(key) < blocksize) { 
       key = key || 0x00 
    } 
   o_key_pad = 0x5c5c... ⊕ key 
   i_key_pad = 0x3636... ⊕ key    
    return hash(o_key_pad ||  
                hash(i_key_pad || message)) 
} 
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Why This Structure?

• i_pad and o_pad are slightly arbitrary

• But it is necessary for security for the two values 

to be different

• So for paranoia chose very different bit patterns


• Second hash prevents appending data

• Otherwise attacker could add more to the 

message and the HMAC and it would still be a 
valid HMAC for the key


• Wouldn't be a problem with the key at the end but at 
the start makes it easier to capture intermediate 
HMACs


• Is a Pseudo Random Function if the 
underlying hash is a PRF

• AKA if you can break this, you can break the hash!
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function hmac (key, message) { 
    if (length(key) > blocksize) { 
        key = hash(key) 
    } 
    while (length(key) < blocksize) { 
       key = key || 0x00 
    } 
   o_key_pad = 0x5c5c... ⊕ key 
   i_key_pad = 0x3636... ⊕ key    
    return hash(o_key_pad ||  
                hash(i_key_pad || message)) 
} 
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Great Properties of HMAC...

• It is still a hash function!

• So all the good things of a cryptographic hash: 

An attacker or even the recipient shouldn't be able to calculate M given 
HMAC(M,K) 

• An attacker who doesn't know K can't even verify if HMAC(M,K) == M

• Very different from the hash alone, and potentially very useful: 

Attacker can't even brute force try to find M based on HMAC(M,K)!


• Its probably safe if you screw up and use the same key for 
both MAC and Encrypt

• Since it is a different algorithm than the encryption function...

• But you shouldn't do this anyway!
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Considerations when using MACs

• Along with messages, can use for data at rest

• E.g. laptop left in hotel, providing you don’t store the key on the laptop

• Can build an efficient data structure for this that doesn’t require re-MAC’ing over entire disk 

image when just a few files change


• MACs in general provide no promise not to leak info about message

• Compute MAC on ciphertext if this matters

• Or just use HMAC, which does promise not to leak info if the  

underlying hash function doesn't


• NEVER use the same key for MAC and  
Encryption...

• Known "FU-this-is-crypto" scenarios reusing an  

encryption key for MAC in some algorithms when its the  
same underlying block cipher for both
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Plus AEAD Encryption Modes...

• The latest block cipher modes are "AEAD":

• Authenticated Encryption with Additional Data


• Provides both integrity and confidentiality over the data

• With integrity also provided for the "Additional Data"


• Used right, these are great

• Assuming you use a library...


• Used wrong...

• The AEAD modes are built for "performance", which means parallelization, 

which means CTR mode, which means IV reuse is a disaster!
 24
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Passwords

• The password problem:

• User Alice authenticates herself with a password P


• How does the site verify later that Alice knows P?

• Classic:

• Just store {Alice, P} in a file...


• But what happens when the site is hacked?

• The attacker now knows Alice's password!


• Enter "Password Hashing"
 25
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Password Hashing

• Instead of storing {Alice, P}...

• Store {Alice, H(P)}


• To verify Alice, when she presents P

• Compute H(P) and compare it with the stored value


• Problem: Brute Force tables...

• Most people chose bad passwords... 

And these passwords are known

• Bad guy has a huge file...

• H(P1), P1 

H(P2), P2 
H(P3), P3...


• Ways to make this more efficient ("Rainbow Tables")
 26
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A Sprinkle of Salt...

• Instead of storing {Alice, H(P)}, also have a user-specific 
string, the "Salt"

• Now store {Alice, Salt, H(P||Salt)}

• The salt ideally should be both long and random, but it isn't considered "secret"


• As long as the salt is unique...

• An attacker who captures the password file has to brute force Alice's 

password on its own


• Its still an "off-line attack" (Attacker can do all the 
computation he wants) but...

• At least the attacker can't precompute possible solutions

 27
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Slower Hashes...

• Most cryptographic hashes are designed to be fast

• After all, that is the point: they should not only turn H(🐮) to hamburger... 

they need to do it quickly


• But for password hashes, we want it to be slow!

• Its OK if it takes a good fraction of a second to check a password

• Since you only need to do it once for each legitimate usage of that password

• But the attacker needs to do it for each password he wants to try


• Slower hashes don't change the asymptotic difficulty of 
password cracking but can have huge practical impact

• Slow rate by a factor of 10,000 or more!
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PBKDF2

• "Password Based Key Derivation 
Function 2"

• Designed to produce a long "random" bitstream 

derived from the password


• Used for both a password hash and to 
generate keys derived from a user's 
password

• PKBDF(PRF, P, S, c, len):

• PRF == Pseudo Random Function  

(e.g. HMAC-SHA256)

• P == Password

• S == Salt

• c == Iteration count

• len == Number of bits/bytes requested

• DK == Derived Key

 29

PKBDF(PRF,P,S,c,len){ 
  DK = "" 
  for i = 1,range(len/blocksize)+1){ 
    DK = DK || F(PRF,P,S,c,i) 
  } 
  return DK[0:len] 
} 

F(PRF,P,S,c,i){ 
  UR = U = PRF(P, S||INT_32(i)) 
  for j = 2; j <= c; ++j { 
    U = PRF(P, U) 
    UR = UR ^ U 
  } 
  return UR 
}
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Comments on PBKDF2

• Allows you to get effectively an arbitrary long string from a 
password

• Assuming the user's password is strong/high entropy


• Very good for getting a bunch of symmetric keys from a 
single password

• You can also use this to seed a pRNG for generating a "random" public/

private key pair


• Designed to be slow in computation...

• But it does not require a lot of memory: 

Other functions are also expensive in memory as well, e.g. scrypt.
 30
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Passwords...

• If an attacker can do an offline attack, your password must be 
really good

• Attacker simply tries a huge number of passwords in parallel using a GPU-based 

computer

• So you need a high entropy password:

• Even xkcd-style is only 10b/word, so need a 7 or more random word passphrase to resist a 

determined attacker


• Life is far better is if the attacker can only do 
online attacks:

• Query the device and see if it works

• Now limited to a few tries per second and 

no parallelism!
 31
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... and iPhones

• Apple's security philosophy:

• In your hands, the phone should be everything

• In anybody else's, it should (ideally) be an inert "brick"


• Apple uses a small co-processor in the phone to handle the cryptography

• The "Secure Enclave"


• The rest of the phone is untrusted

• Notably the memory:  All data must be encrypted: 

The CPU requests that the Secure Enclave unencrypt data and some data (e.g., your credit card 
for ApplePay) is only readable by the Secure Enclave


• They also have an ability to effectively erase a small piece of memory

• "Effaceable Storage": this takes a good amount of EE trickery

 32
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Crypto and the iPhone Filesystem

• A lot of keys encrypted by keys...

• But there is a random master key, kphone, that is the root of all the other keys


• Need to store kphone encrypted by the user's password in the flash memory

• PBKDF2(P,...) = kuser


• But how to prevent an off-line brute-force attack?

• Also have a 256b random secret burned into the Secure Enclave

• Need to take apart the chip to get this!


• Now the user key is not just a function of P, but P||secret

• Without the secret, can not do an offline attack


• All online attacks have to go through the secure enclave

• After 5 tries, starts to slow down

• After 10 tries, can (optionally) nuke kphone!

• Erase just that part of memory -> effectively erases the entire phone!
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Backups...

• Of course there is a necessary weakness:

• Backing up the phone copies all the data off in a form not encrypted using the in-chip 

secret

• After all, you need to be able to recover it onto a new phone!


• So someone who can get your phone...   
And can somehow managed to have it unlocked

• Thief, abusive boyfriend, cop...

• Hold it up to your face (iPhone X) or Fingerprint (5s or beyond)

• And then sync it with a new computer


• Change of policy for iOS-11:

• Now you also need to put in the passcode to trust a new computer: 

Can't create a backup without knowing the passcode
 34
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But A Lot More Uses for 
Random Numbers...
• The key foundation for all modern cryptographic systems is 

often not encryption but these "random" numbers!

• So many times you need to get something random:

• A random cryptographic key

• A random initialization vector

• A "nonce" (use-once item)

• A unique identifier

• Stream Ciphers


• If an attacker can predict a random number things can 
catastrophically fail

 35
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Breaking Slot Machines

• Some casinos experienced unusual bad "luck"

• The suspicious players would wait and then all of a sudden 

try to play


• The slot machines have predictable pRNG

• Which was based on the current time & a seed


• So play a little...

• With a cellphone watching

• And now you know when to press "spin" to be more likely 

to win


• Oh, and this never effected Vegas!

• Evaluation standards for Nevada slot machines 

specifically designed to address this sort of issue
 36
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Breaking Bitcoin Wallets

• blockchain.info supports "web wallets"

• Javascript that protects your Bitcoin


• The private key for Bitcoin needs to be 
random

• Because otherwise an attacker can spend the 

money


• An "Improvment" [sic] to the RNG 
reduced the entropy (the actual 
randomness)

• Any wallet created with this improvment was brute-

forceable and could be stolen
 37
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TRUE Random Numbers

• True random numbers generally require a physical process

• Common circuit is an unusable ring oscillator built into the CPU

• It is then sampled at a low rate to generate true random bits which are then fed into a pRNG on the 

CPU


• Other common sources are human  
activity measured at very fine time scales

• Keystroke timing, mouse movements, etc

• "Wiggle the mouse to generate entropy for a key"


• Network/disk activity which is often human driven


• More exotic ones are possible:

• Cloudflare has a wall of lava lamps that are recorded 

by a HD video camera which views the lamps through a  
rotating prism: It is just one source of the randomness
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Combining Entropy

• The general procedure is to combine various sources of 
entropy


• The goal is to be able to take multiple crappy sources of 
entropy


• Measured in how many bits: 
A single flip of a coin is 1 bit of entropy


• And combine into a value where the entropy is the minimum of the sum of all 
entropy sources (maxed out by the # of bits in the hash function itself)


• N-1 bad sources and 1 good source -> good pRNG state

 39
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Pseudo Random Number Generators 
(aka Deterministic Random Bit Generators)
• Unfortunately one needs a lot of random numbers in cryptography

• More than one can generally get by just using the physical entropy source


• Enter the pRNG or DRBG

• If one knows the state it is entirely predictable

• If one doesn't know the state it should be indistinguishable from a random string


• Three operations

• Instantiate: (aka Seed) Set the internal state based on the real entropy sources

• Reseed: Update the internal state based on both the previous state and additional entropy

• The big different from a simple stream cipher


• Generate: Generate a series of random bits based on the internal state

• Generate can also optionally add in additional entropy


• instantiate(entropy)  
reseed(entropy) 
generate(bits, {optional entropy})

 40
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Properties for the pRNG

• Can a pRNG be truly random?

• No.  For seed length s, it can only generate at most 2s distinct possible 

sequences.


• A cryptographically strong pRNG “looks” truly random to 
an attacker


• Attacker cannot distinguish it from a random sequence: 
If the attacker can tell a sufficiently long bitstream was generated by the 
pRNG instead of a truly random source it isn't a good pRNG

 41
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Prediction and Rollback Resistance

• A pRNG should be predictable only if you know the internal state

• It is this predictability which is why its called "pseudo"


• If the attacker does not know the internal state

• The attacker should not be able to distinguish a truly random string from one 

generated by the pRNG


• It should also be rollback-resistant

• Even if the attacker finds out the state at time T, they should not be able to 

determine what the state was at T-1

• More precisely, if presented with two random strings, one truly random and one 

generated by the pRNG at time T-1, the attacker should not be able to distinguish 
between the two
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Why "Rollback Resistance" is Essential

• Assume attacker, at time T, is able to obtain all the internal state of 
the pRNG

• How?  E.g. the pRNG screwed up and instead of an IV, released the internal state, or 

the pRNG is bad...


• Attacker observes how the pRNG was used

• T-1 = Session key 

T0 = Nonce


• Now if the pRNG doesn't resist 
rollback, and the attacker gets the  
state at T0, attacker can know the  
session key!  And we are back to...
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More on Seeding and Reseeding

• Seeding should take all the different physical entropy 
sources available


• If one source has 0 entropy, it must not reduce the entropy of the seed

• We can shove a whole bunch of low-entropy sources together and create a 

high-entropy seed


• Reseeding adds in even more entropy

• F(internal_state, new material) 
• Again, even if reseeding with 0 entropy, it must not reduce the entropy of the 

seed

 44
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Probably the best pRNG/DRBG: 
HMAC_DRBG
• Generally believed to be the best

• Accept no substitutes!


• Two internal state registers, V and K

• Each the same size as the hash function's output


• V is used as (part of) the data input into HMAC, while K is the key

• If you can break this pRNG you can either break the underlying 

hash function or break a significant assumption about how 
HMAC works

• Yes, security proofs sometimes are a very good thing and actually do work

 45
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HMAC_DRBG 
Generate
• The basic generation function

• Remarks:

• It requires one HMAC call per blocksize-bits of state

• Then two more HMAC calls to update the internal 

state


• Prediction resistance:

• If you can distinguish new K from random when you 

don't know old K: 
You've distinguished HMAC from a random function! 
Which means you've either broken the hash or the 
HMAC construction


• Rollback resistance:

• If you can learn old K from new K and V: 

You've reversed the hash function!
 46

function hmac_drbg_generate (state, n) { 
  tmp = "" 
  while(len(tmp) < N){ 
     state.v = hmac(state.k,state.v) 
     tmp = tmp || state.v 
  } 
  // Update state with no input 
  state.k = hmac(state.k, state.v || 0x00) 
  state.v = hmac(state.k, state.v) 
  // Return the first N bits of tmp 
  return tmp[0:N] 
} 
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HMAC_DRBG 
Update
• Used instead of the "no-input update" 

when you have additional entropy on 
the generate call


• Used standalone for both instantiate 
(state.k = state.v = 0) and reseed 
(keep state.k and state.v)


• Designed so that even if the attacker 
controls the input but doesn't know k: 
The attacker should not be able to 
predict the new k 
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function hmac_drbg_update (state, input) { 
  state.k = hmac(state.k, state.v || 0x00 
                          || input) 
  state.v = hmac(state.k, state.v) 
  state.k = hmac(state.k, state.v || 0x01 
                          || input) 
  state.v = hmac(state.k, state.v) 
} 


