
Computer Science 161 Fall 2019 Weaver

Integrity,
Hashes, & 
"Random"  
Numbers

 1

Computer Science 161 Fall 2019 Weaver

Announcements

• Midterm 1: September 23rd, 7-9pm

• Hearst Field Annex Room 1A

• Wheeler Auditorium

• How to know which room?

• Take your student ID in a text file with a single newline at the end

• Apply sha256 to it

• Write down the first 8 hex digits and bring them with you to the exam 

(You will be asked to provide them on the exam,  
so put them on your single-page, double sided, handwritten cheat sheet)

• DSP students, you still need to bring this with you even though you are going to a DSP room...

• If the first 2 hex digits are less than 0x38, go to Hearst Field Annex Room 1A

• Otherwise go to Wheeler

• No class on the 23rd

• Review session TBA

 2

Computer Science 161 Fall 2019 Weaver

Mallory the Manipulator

• Mallory is an active attacker

• Can introduce new messages (ciphertext)

• Can “replay” previous ciphertexts

• Can cause messages to be reordered or discarded

• A “Man in the Middle” (MITM) attacker

• Can be much more powerful than just eavesdropping

 3

Computer Science 161 Fall 2019 Weaver

Encryption Does Not Provide Integrity

• Simple example: Consider a block cipher in CTR mode...

• Suppose Mallory knows that Alice sends to Bob “Pay Mal

$0100”. Mallory intercepts corresponding C

• M = “Pay Mal $0100”. C = “r4ZC#jj8qThMK”

• M10..13 = “0100”. C10..13 = “ThMK”

• Mallory wants to replace some 
bits of C...

 4

Computer Science 161 Fall 2019 Weaver

Encryption Does Not Provide Integrity

• Mallory computes

• “0100” ⨁ C10..13

• Tells Mallory that section of the counter XOR: 

Remember that CTR mode computes Ek(IV||CTR) and XORs it with the corresponding
part of the message

• C'10..13 = "9999" ⨁ “0100” ⨁ C10..13

• Mallory now forwards to Bob a full C' = C0..9||C'10..13||C14...

• Bob will decrypt the message as "Pay Mal $9999"...

• For a CTR mode cipher, Mallory can in general replace any known message

M with a message M' of equal length!
 5

Computer Science 161 Fall 2019 Weaver

Integrity and Authentication

• Integrity: Bob can confirm that what he’s received is exactly the message M that
was originally sent

• Authentication: Bob can confirm that what he’s received was indeed generated
by Alice

• Reminder: for either, confidentiality may-or-may-not matter

• E.g. conf. not needed when Mozilla distributes a new Firefox binary

• Approach using symmetric-key cryptography:

• Integrity via MACs (which use a shared secret key K)

• Authentication arises due to confidence that only Alice & Bob have K

• Approach using public-key cryptography (later on):

• “Digital signatures” provide both integrity & authentication together

• Key building block: cryptographically strong hash functions
 6

Computer Science 161 Fall 2019 Weaver

Hash Functions

• Properties

• Variable input size

• Fixed output size (e.g., 256 bits)

• Efficient to compute

• Pseudo-random (mixes up input extremely well) 

 

• Provides a “fingerprint” of a document

• E.g. “shasum -a 256 <exams/mt1-solutions.pdf” prints 

0843b3802601c848f73ccb5013afa2d5c4d424a6ef477890ebf8db9bc4f7d13d

 7

Computer Science 161 Fall 2019 Weaver

Cryptographically Strong Hash Functions

• A collision occurs if x≠y but  
Hash(x) = Hash(y)
• Since input size > output size, collisions do

happen

• A cryptographically strong Hash(x)
provides three properties:

• One-way: h = Hash(x) easy to compute, but not

to invert.

• Intractable to find any x' s.t. Hash(x') = h,  

for a given h

• Also termed “preimage resistant”

 8

H(🐮) =

Computer Science 161 Fall 2019 Weaver

Cryptographically Strong Hash Functions

• The other two properties of a cryptographically strong Hash(x):

• Second preimage resistant: given x, intractable to find x' s.t. Hash(x) = Hash(x')

• Collision resistant: intractable to find any x, y s.t. Hash(x) = Hash(y)

• Collision resistant ⟹ Second preimage resistant

• We consider them separately because given Hash might differ in how well it resists

each

• Also, the Birthday Paradox means that for n-bit Hash, finding x-y pair takes only ≈ 2n/2

pairs

• Vs. potentially 2n tries for x': Hash(x) = Hash(x') for given x

• Plus a hash function should look "random"

• A "PRF" or Pseudo-Random Function

 9

Computer Science 161 Fall 2019 Weaver

Cryptographically Strong Hash Functions, con’t

• Some contemporary hash functions

• MD5: 128 bits

• broken – lack of collision resistance

• Collisions for the heck of it: https://shells.aachen.ccc.de/~spq/md5.gif  

An MD5 "hash quine": an animated GIF that shows its own hash

• SHA-1: 160 bits broken spring 2017, but was known to be weak yet still used...

• SHA-256/SHA-384/SHA-512: 256, 384, 512 bits in the SHA-2 family, at least not currently broken

• SHA-3: New standard! Yayyy!!!! (Based on Keccak, again 256b, 384b, and 512b options)

• Provide a handy way to unambiguously refer to large documents

• If hash can be securely communicated, provides integrity

• E.g. Mozilla securely publishes SHA-256(new FF binary)

• Anyone who fetches binary can use “cat binary | shasum -a 256” to confirm it’s the right one, untampered

• Not enough by themselves for integrity, since functions are completely known –
Mallory can just compute revised hash value to go with altered message

 10

Computer Science 161 Fall 2019 Weaver

SHA-256...

• SHA-256/SHA-384 are two parameters for the SHA-2 hash
algorithm, returning 256b or 384b hashes

• Works on blocks with a truncation routine to make it act on sequences of
arbitrary length

• Is vulnerable to a length-extension attack: s is secret

• Mallory knows len(s), H(s)
• Mallory can use this to calculate H(s||M) for an M of Mallory's construction

• Works because all the internal state at the point of calculating H(s||...) is derivable

from H(s) and len(s)

• New SHA-3 standard (Keccak) does not have this property
 11

Computer Science 161 Fall 2019 Weaver

Stupid Hash Tricks: 
Sample A File...
• BlackHat Dude claims to have 150M records stolen from

Equifax...

• How can I as a reporter verify this?

• Idea: If I can have the hacker select 10 random lines...

• And in selecting them also say something about the size of the file...

• Voila! Verify those lines and I now know he's not full of BS

• Can I use hashing to write a small script which the BlackHat
Dude can run?

• Where I can easily verify that the 10 lines were sampled at random, and can't

be faked?
 12

Computer Science 161 Fall 2019 Weaver

Sample a File

 13

#!/usr/bin/env python
import hashlib, sys
hashes = {}

for line in sys.stdin:
 line = line.strip()
 for x in range(10):
 tmp = "%s-%i" % (line, x)
 hashval = hashlib.sha256(tmp)
 h = hashval.digest()
 if x not in hashes or hashes[x][0] > h:
 hashes[x] = (h, hashval, tmp)

for x in range(10):
 h, hashval, val = hashes[x]
 print "%s=\"%s\"" % (hashval.hexdigest(), val)

Computer Science 161 Fall 2019 Weaver

Why does this work?

• For each x in range 0-9...

• Calculates H(line||x)

• Stores the lowest hash matching so far

• Since the hash appears random...

• Each iteration is an independent sample from the file

• The expected value of H(line||x) is a function of the size of the file: 

More lines, and the value is smaller

• To fake it...

• Would need to generate fake lines, and see if the hash is suitably low

• Yet would need to make sure these fake lines semantically match!

• Thus you can't just go "John Q Fake", "John Q Fakke", "Fake, John Q", etc...

 14

Computer Science 161 Fall 2019 Weaver

Message Authentication Codes (MACs)

• Symmetric-key approach for integrity

• Uses a shared (secret) key K

• Goal: when Bob receives a message, can confidently determine it hasn’t
been altered

• In addition, whomever sent it must have possessed K 

	 (⇒ message authentication, sorta...)

• Conceptual approach:

• Alice sends {M, T} to Bob, with tag T = MAC(K, M)

• Note, M could instead be C = EK'(M), but not required

• When Bob receives {M', T'}, Bob checks whether T' = MAC(K, M')

• If so, Bob concludes message untampered, came from Alice

• If not, Bob discards message as tampered/corrupted

 15

Computer Science 161 Fall 2019 Weaver

Requirements for Secure MAC Functions

• Suppose MITM attacker Mallory intercepts Alice’s {M, T} transmission …

• … and wants to replace M with altered M*
• … but doesn’t know shared secret key K

• We have secure integrity if MAC function 
T = MAC(M, K) has two properties:

• Mallory can’t compute T* = MAC(M*, K)

• Otherwise, could send Bob {M*, T*} and fool him

• Mallory can’t find M** such that MAC(M**, K) = T

• Otherwise, could send Bob {M**, T} and fool him

• These need to hold even if Mallory can observe many {Mi, Ti} pairs,
including for Mi’s she chose

 16

Computer Science 161 Fall 2019 Weaver

MAC then Encrypt or  
Encrypt then MAC
• You should never use the same key for the MAC and the Encryption

• Some MACs will break completely if you reuse the key

• Even if it is probably safe (eg, AES for encryption, HMAC for MAC) its still a bad idea

• MAC then Encrypt:

• Compute T = MAC(M,Kmac), send C = E(M||T,Kencrypt)

• Encrypt then MAC:

• Compute C = E(M,Kencrypt), T = MAC(M,Kmac),  

send C||T

• Theoretically they are the same, but...

• Once again, its time for ...

 17

Computer Science 161 Fall 2019 Weaver

HTTPS Authentication in 
Practice
• When you log into a web site, it sets a "cookie" in your browser

• All subsequent requests include this cookie so the web server knows who you are

• If an attacker can get your cookie...

• They can impersonate you on the "Secure" site

• And the attacker can create multiple  
tries

• On a WiFi network, inject a bit of JavaScript 

that repeatedly connects to the site

• While as a man-in-the-middle to manipulate  

connections

 18

Computer Science 161 Fall 2019 Weaver

The TLS 1.0 "Lucky13" Attack: 
"F-U, This is Cryptography"
• HTTPS/TLS uses MAC then Encrypt

• With CBC encryption

• The Lucky13 attack changes the cipher text in an attempt to discover the
state of a byte

• But can't predict the MAC

• The TLS connection retries after each failure so the attacker can try multiple times

• Goal is to determine the status each byte in the authentication cookie which is in a known position

• It detects the timing of the error response

• Which is different if the guess is right or wrong

• Even though the underlying algorithm was "proved" secure!

• So always do Encrypt then MAC since,  
once again, it is more mistake tolerant

 19

Computer Science 161 Fall 2019 Weaver

The best MAC construction: 
HMAC
• Idea is to turn a hash function into a MAC

• Since hash functions are often much  

faster than encryption

• While still maintaining the properties of  

being a cryptographic hash

• Reduce/expand the key to a  
single hash block

• XOR the key with the i_pad

• 0x363636... (one hash block long)

• Hash ((K ⊕ i_pad) || message)

• XOR the key with the o_pad

• 0x5c5c5c...

• Hash ((K ⊕ o_pad) || first hash)
 20

function hmac (key, message) {
 if (length(key) > blocksize) {
 key = hash(key)
 }
 while (length(key) < blocksize) {
 key = key || 0x00
 }
 o_key_pad = 0x5c5c... ⊕ key
 i_key_pad = 0x3636... ⊕ key
 return hash(o_key_pad ||
 hash(i_key_pad || message))
}

Computer Science 161 Fall 2019 Weaver

Why This Structure?

• i_pad and o_pad are slightly arbitrary

• But it is necessary for security for the two values

to be different

• So for paranoia chose very different bit patterns

• Second hash prevents appending data

• Otherwise attacker could add more to the

message and the HMAC and it would still be a
valid HMAC for the key

• Wouldn't be a problem with the key at the end but at
the start makes it easier to capture intermediate
HMACs

• Is a Pseudo Random Function if the
underlying hash is a PRF

• AKA if you can break this, you can break the hash!

 21

function hmac (key, message) {
 if (length(key) > blocksize) {
 key = hash(key)
 }
 while (length(key) < blocksize) {
 key = key || 0x00
 }
 o_key_pad = 0x5c5c... ⊕ key
 i_key_pad = 0x3636... ⊕ key
 return hash(o_key_pad ||
 hash(i_key_pad || message))
}

Computer Science 161 Fall 2019 Weaver

Great Properties of HMAC...

• It is still a hash function!

• So all the good things of a cryptographic hash: 

An attacker or even the recipient shouldn't be able to calculate M given
HMAC(M,K)

• An attacker who doesn't know K can't even verify if HMAC(M,K) == M

• Very different from the hash alone, and potentially very useful: 

Attacker can't even brute force try to find M based on HMAC(M,K)!

• Its probably safe if you screw up and use the same key for
both MAC and Encrypt

• Since it is a different algorithm than the encryption function...

• But you shouldn't do this anyway!

 22

Computer Science 161 Fall 2019 Weaver

Considerations when using MACs

• Along with messages, can use for data at rest

• E.g. laptop left in hotel, providing you don’t store the key on the laptop

• Can build an efficient data structure for this that doesn’t require re-MAC’ing over entire disk

image when just a few files change

• MACs in general provide no promise not to leak info about message

• Compute MAC on ciphertext if this matters

• Or just use HMAC, which does promise not to leak info if the  

underlying hash function doesn't

• NEVER use the same key for MAC and  
Encryption...

• Known "FU-this-is-crypto" scenarios reusing an  

encryption key for MAC in some algorithms when its the  
same underlying block cipher for both

 23

Computer Science 161 Fall 2019 Weaver

Plus AEAD Encryption Modes...

• The latest block cipher modes are "AEAD":

• Authenticated Encryption with Additional Data

• Provides both integrity and confidentiality over the data

• With integrity also provided for the "Additional Data"

• Used right, these are great

• Assuming you use a library...

• Used wrong...

• The AEAD modes are built for "performance", which means parallelization,

which means CTR mode, which means IV reuse is a disaster!
 24

Computer Science 161 Fall 2019 Weaver

Passwords

• The password problem:

• User Alice authenticates herself with a password P

• How does the site verify later that Alice knows P?

• Classic:

• Just store {Alice, P} in a file...

• But what happens when the site is hacked?

• The attacker now knows Alice's password!

• Enter "Password Hashing"
 25

Computer Science 161 Fall 2019 Weaver

Password Hashing

• Instead of storing {Alice, P}...

• Store {Alice, H(P)}

• To verify Alice, when she presents P

• Compute H(P) and compare it with the stored value

• Problem: Brute Force tables...

• Most people chose bad passwords... 

And these passwords are known

• Bad guy has a huge file...

• H(P1), P1 

H(P2), P2 
H(P3), P3...

• Ways to make this more efficient ("Rainbow Tables")
 26

Computer Science 161 Fall 2019 Weaver

A Sprinkle of Salt...

• Instead of storing {Alice, H(P)}, also have a user-specific
string, the "Salt"

• Now store {Alice, Salt, H(P||Salt)}

• The salt ideally should be both long and random, but it isn't considered "secret"

• As long as the salt is unique...

• An attacker who captures the password file has to brute force Alice's

password on its own

• Its still an "off-line attack" (Attacker can do all the
computation he wants) but...

• At least the attacker can't precompute possible solutions

 27

Computer Science 161 Fall 2019 Weaver

Slower Hashes...

• Most cryptographic hashes are designed to be fast

• After all, that is the point: they should not only turn H(🐮) to hamburger... 

they need to do it quickly

• But for password hashes, we want it to be slow!

• Its OK if it takes a good fraction of a second to check a password

• Since you only need to do it once for each legitimate usage of that password

• But the attacker needs to do it for each password he wants to try

• Slower hashes don't change the asymptotic difficulty of
password cracking but can have huge practical impact

• Slow rate by a factor of 10,000 or more!

 28

Computer Science 161 Fall 2019 Weaver

PBKDF2

• "Password Based Key Derivation
Function 2"

• Designed to produce a long "random" bitstream 

derived from the password

• Used for both a password hash and to
generate keys derived from a user's
password

• PKBDF(PRF, P, S, c, len):

• PRF == Pseudo Random Function  

(e.g. HMAC-SHA256)

• P == Password

• S == Salt

• c == Iteration count

• len == Number of bits/bytes requested

• DK == Derived Key

 29

PKBDF(PRF,P,S,c,len){
 DK = ""
 for i = 1,range(len/blocksize)+1){
 DK = DK || F(PRF,P,S,c,i)
 }
 return DK[0:len]
}

F(PRF,P,S,c,i){
 UR = U = PRF(P, S||INT_32(i))
 for j = 2; j <= c; ++j {
 U = PRF(P, U)
 UR = UR ^ U
 }
 return UR
}

Computer Science 161 Fall 2019 Weaver

Comments on PBKDF2

• Allows you to get effectively an arbitrary long string from a
password

• Assuming the user's password is strong/high entropy

• Very good for getting a bunch of symmetric keys from a
single password

• You can also use this to seed a pRNG for generating a "random" public/

private key pair

• Designed to be slow in computation...

• But it does not require a lot of memory: 

Other functions are also expensive in memory as well, e.g. scrypt.
 30

Computer Science 161 Fall 2019 Weaver

Passwords...

• If an attacker can do an offline attack, your password must be
really good

• Attacker simply tries a huge number of passwords in parallel using a GPU-based

computer

• So you need a high entropy password:

• Even xkcd-style is only 10b/word, so need a 7 or more random word passphrase to resist a

determined attacker

• Life is far better is if the attacker can only do 
online attacks:

• Query the device and see if it works

• Now limited to a few tries per second and 

no parallelism!
 31

Computer Science 161 Fall 2019 Weaver

... and iPhones

• Apple's security philosophy:

• In your hands, the phone should be everything

• In anybody else's, it should (ideally) be an inert "brick"

• Apple uses a small co-processor in the phone to handle the cryptography

• The "Secure Enclave"

• The rest of the phone is untrusted

• Notably the memory: All data must be encrypted: 

The CPU requests that the Secure Enclave unencrypt data and some data (e.g., your credit card
for ApplePay) is only readable by the Secure Enclave

• They also have an ability to effectively erase a small piece of memory

• "Effaceable Storage": this takes a good amount of EE trickery

 32

Computer Science 161 Fall 2019 Weaver

Crypto and the iPhone Filesystem

• A lot of keys encrypted by keys...

• But there is a random master key, kphone, that is the root of all the other keys

• Need to store kphone encrypted by the user's password in the flash memory

• PBKDF2(P,...) = kuser

• But how to prevent an off-line brute-force attack?

• Also have a 256b random secret burned into the Secure Enclave

• Need to take apart the chip to get this!

• Now the user key is not just a function of P, but P||secret

• Without the secret, can not do an offline attack

• All online attacks have to go through the secure enclave

• After 5 tries, starts to slow down

• After 10 tries, can (optionally) nuke kphone!

• Erase just that part of memory -> effectively erases the entire phone!

 33

Computer Science 161 Fall 2019 Weaver

Backups...

• Of course there is a necessary weakness:

• Backing up the phone copies all the data off in a form not encrypted using the in-chip

secret

• After all, you need to be able to recover it onto a new phone!

• So someone who can get your phone...  
And can somehow managed to have it unlocked

• Thief, abusive boyfriend, cop...

• Hold it up to your face (iPhone X) or Fingerprint (5s or beyond)

• And then sync it with a new computer

• Change of policy for iOS-11:

• Now you also need to put in the passcode to trust a new computer: 

Can't create a backup without knowing the passcode
 34

Computer Science 161 Fall 2019 Weaver

But A Lot More Uses for 
Random Numbers...
• The key foundation for all modern cryptographic systems is

often not encryption but these "random" numbers!

• So many times you need to get something random:

• A random cryptographic key

• A random initialization vector

• A "nonce" (use-once item)

• A unique identifier

• Stream Ciphers

• If an attacker can predict a random number things can
catastrophically fail

 35

Computer Science 161 Fall 2019 Weaver

Breaking Slot Machines

• Some casinos experienced unusual bad "luck"

• The suspicious players would wait and then all of a sudden

try to play

• The slot machines have predictable pRNG

• Which was based on the current time & a seed

• So play a little...

• With a cellphone watching

• And now you know when to press "spin" to be more likely

to win

• Oh, and this never effected Vegas!

• Evaluation standards for Nevada slot machines

specifically designed to address this sort of issue
 36

Computer Science 161 Fall 2019 Weaver

Breaking Bitcoin Wallets

• blockchain.info supports "web wallets"

• Javascript that protects your Bitcoin

• The private key for Bitcoin needs to be
random

• Because otherwise an attacker can spend the

money

• An "Improvment" [sic] to the RNG
reduced the entropy (the actual
randomness)

• Any wallet created with this improvment was brute-

forceable and could be stolen
 37

Computer Science 161 Fall 2019 Weaver

TRUE Random Numbers

• True random numbers generally require a physical process

• Common circuit is an unusable ring oscillator built into the CPU

• It is then sampled at a low rate to generate true random bits which are then fed into a pRNG on the

CPU

• Other common sources are human  
activity measured at very fine time scales

• Keystroke timing, mouse movements, etc

• "Wiggle the mouse to generate entropy for a key"

• Network/disk activity which is often human driven

• More exotic ones are possible:

• Cloudflare has a wall of lava lamps that are recorded 

by a HD video camera which views the lamps through a  
rotating prism: It is just one source of the randomness

 38

Computer Science 161 Fall 2019 Weaver

Combining Entropy

• The general procedure is to combine various sources of
entropy

• The goal is to be able to take multiple crappy sources of
entropy

• Measured in how many bits: 
A single flip of a coin is 1 bit of entropy

• And combine into a value where the entropy is the minimum of the sum of all
entropy sources (maxed out by the # of bits in the hash function itself)

• N-1 bad sources and 1 good source -> good pRNG state

 39

Computer Science 161 Fall 2019 Weaver

Pseudo Random Number Generators 
(aka Deterministic Random Bit Generators)
• Unfortunately one needs a lot of random numbers in cryptography

• More than one can generally get by just using the physical entropy source

• Enter the pRNG or DRBG

• If one knows the state it is entirely predictable

• If one doesn't know the state it should be indistinguishable from a random string

• Three operations

• Instantiate: (aka Seed) Set the internal state based on the real entropy sources

• Reseed: Update the internal state based on both the previous state and additional entropy

• The big different from a simple stream cipher

• Generate: Generate a series of random bits based on the internal state

• Generate can also optionally add in additional entropy

• instantiate(entropy)  
reseed(entropy) 
generate(bits, {optional entropy})

 40

Computer Science 161 Fall 2019 Weaver

Properties for the pRNG

• Can a pRNG be truly random?

• No. For seed length s, it can only generate at most 2s distinct possible

sequences.

• A cryptographically strong pRNG “looks” truly random to
an attacker

• Attacker cannot distinguish it from a random sequence: 
If the attacker can tell a sufficiently long bitstream was generated by the
pRNG instead of a truly random source it isn't a good pRNG

 41

Computer Science 161 Fall 2019 Weaver

Prediction and Rollback Resistance

• A pRNG should be predictable only if you know the internal state

• It is this predictability which is why its called "pseudo"

• If the attacker does not know the internal state

• The attacker should not be able to distinguish a truly random string from one

generated by the pRNG

• It should also be rollback-resistant

• Even if the attacker finds out the state at time T, they should not be able to

determine what the state was at T-1

• More precisely, if presented with two random strings, one truly random and one

generated by the pRNG at time T-1, the attacker should not be able to distinguish
between the two

 42

Computer Science 161 Fall 2019 Weaver

Why "Rollback Resistance" is Essential

• Assume attacker, at time T, is able to obtain all the internal state of
the pRNG

• How? E.g. the pRNG screwed up and instead of an IV, released the internal state, or

the pRNG is bad...

• Attacker observes how the pRNG was used

• T-1 = Session key 

T0 = Nonce

• Now if the pRNG doesn't resist 
rollback, and the attacker gets the  
state at T0, attacker can know the  
session key! And we are back to...

 43

Computer Science 161 Fall 2019 Weaver

More on Seeding and Reseeding

• Seeding should take all the different physical entropy
sources available

• If one source has 0 entropy, it must not reduce the entropy of the seed

• We can shove a whole bunch of low-entropy sources together and create a

high-entropy seed

• Reseeding adds in even more entropy

• F(internal_state, new material)
• Again, even if reseeding with 0 entropy, it must not reduce the entropy of the

seed

 44

Computer Science 161 Fall 2019 Weaver

Probably the best pRNG/DRBG: 
HMAC_DRBG
• Generally believed to be the best

• Accept no substitutes!

• Two internal state registers, V and K

• Each the same size as the hash function's output

• V is used as (part of) the data input into HMAC, while K is the key

• If you can break this pRNG you can either break the underlying

hash function or break a significant assumption about how
HMAC works

• Yes, security proofs sometimes are a very good thing and actually do work

 45

Computer Science 161 Fall 2019 Weaver

HMAC_DRBG 
Generate
• The basic generation function

• Remarks:

• It requires one HMAC call per blocksize-bits of state

• Then two more HMAC calls to update the internal

state

• Prediction resistance:

• If you can distinguish new K from random when you

don't know old K: 
You've distinguished HMAC from a random function! 
Which means you've either broken the hash or the
HMAC construction

• Rollback resistance:

• If you can learn old K from new K and V: 

You've reversed the hash function!
 46

function hmac_drbg_generate (state, n) {
 tmp = ""
 while(len(tmp) < N){
 state.v = hmac(state.k,state.v)
 tmp = tmp || state.v
 }
 // Update state with no input
 state.k = hmac(state.k, state.v || 0x00)
 state.v = hmac(state.k, state.v)
 // Return the first N bits of tmp
 return tmp[0:N]
}

Computer Science 161 Fall 2019 Weaver

HMAC_DRBG 
Update
• Used instead of the "no-input update"

when you have additional entropy on
the generate call

• Used standalone for both instantiate
(state.k = state.v = 0) and reseed
(keep state.k and state.v)

• Designed so that even if the attacker
controls the input but doesn't know k: 
The attacker should not be able to
predict the new k

 47

function hmac_drbg_update (state, input) {
 state.k = hmac(state.k, state.v || 0x00
 || input)
 state.v = hmac(state.k, state.v)
 state.k = hmac(state.k, state.v || 0x01
 || input)
 state.v = hmac(state.k, state.v)
}

