Computer Science 161 Fall 2019

Nicholas Weaver

I

Public Key

Our Roadmap...

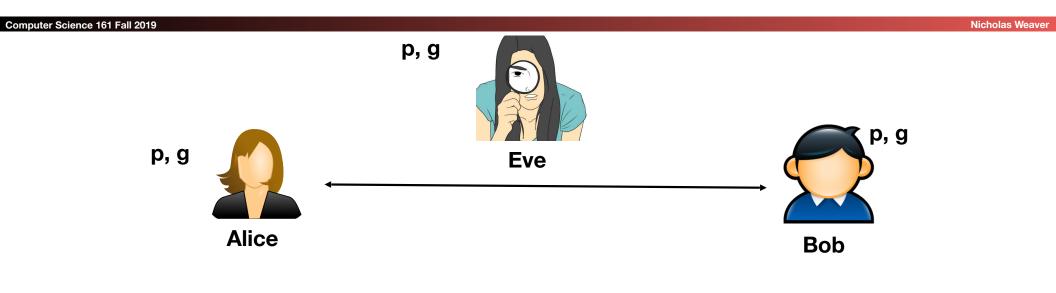
- Public Key:
 - Something *everyone* can know
- Private Key:
 - The secret belonging to a specific person
- Diffie/Hellman:
 - Provides key exchange with no pre-shared secret
- ElGamal & RSA:
- Provide a message to a recipient only knowing the recipient's *public key*
- DSA & RSA signatures:
 - Provide a message that anyone can prove was generated with a *private key*

Diffie-Hellman Key Exchange

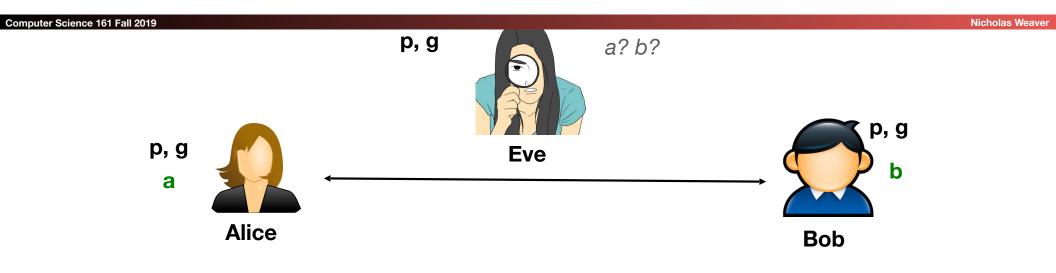
Computer Science 161 Fall 2019

- What if instead they can somehow generate a random key when needed?
- Seems impossible in the presence of Eve observing all of their communication ...
 - How can they exchange a key without her learning it?
- But: actually is possible using public-key technology
 - Requires that Alice & Bob know that their messages will reach one another without any meddling
- Protocol: Diffie-Hellman Key Exchange (DHE)
 - The E is "Ephemeral", we use this to create a temporary key for other uses and then forget about it

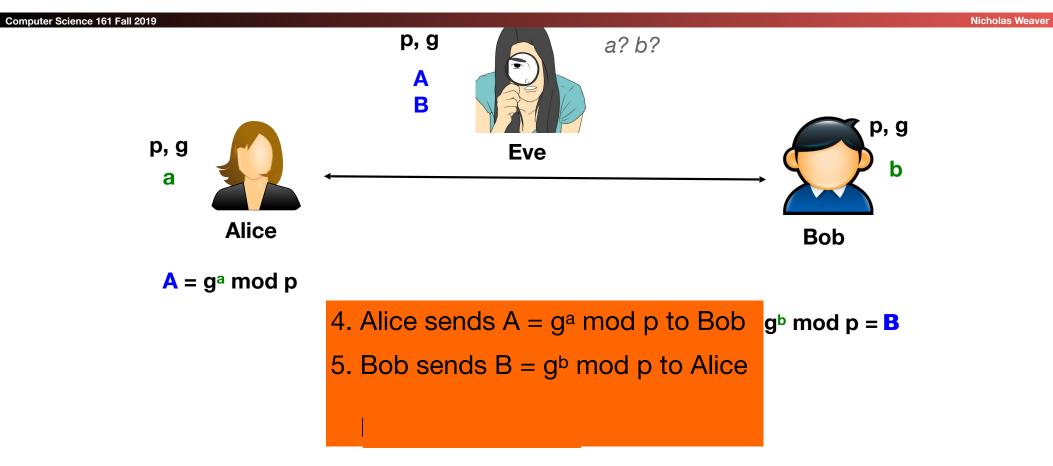
Diffie-Hellman Key Exchange

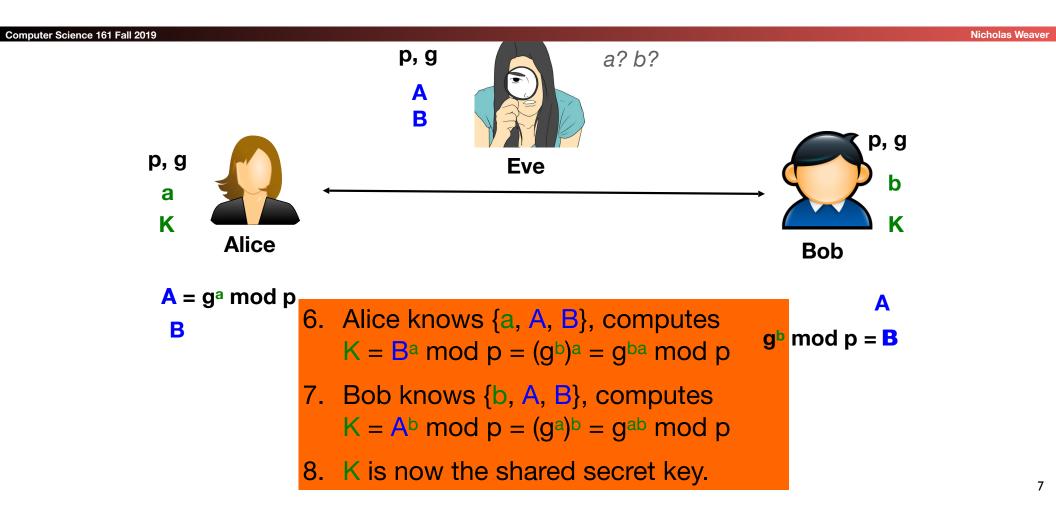


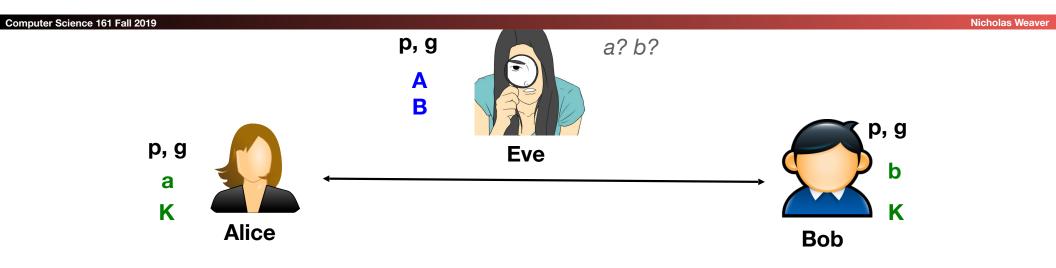
1. Everyone agrees in advance on a well-known (large) prime **p** and a corresponding **g**: 1 < g < p-1



2.Alice picks random secret 'a': 1 < a < p-1
3.Bob picks random secret 'b': 1 < b < p-1







While Eve knows {p, g, g^a mod p, g^b mod p}, believed to be *computationally infeasible* for her to then deduce $K = g^{ab} \mod p$. She can easily construct $A \cdot B = g^a \cdot g^b \mod p = g^{a+b} \mod p$. But computing g^{ab} requires ability to take *discrete logarithms* mod p.

This is Ephemeral Diffie/Hellman

Computer Science 161 Fall 2019

- K = g^{ab} mod p is used as the basis for a "session key"
 - A symmetric key used to protect subsequent communication between Alice and Bob
 - In general, public key operations are vastly more expensive than symmetric key, so it
 is mostly used just to agree on secret keys, transmit secret keys, or sign hashes
 - If either **a** or **b** is random, **K** is random

When Alice and Bob are done, they discard K, a, b

 This provides *forward secrecy*: Alice and Bob don't retain any information that a later attacker who can compromise Alice or Bob's secrets could use to decrypt the messages exchanged with K.

Diffie Hellman is part of more generic problem

Computer Science 161 Fall 2019

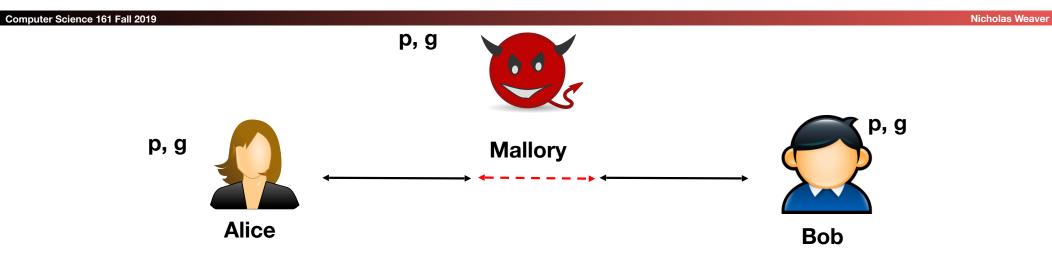
- This involved deep mathematical voodoo called "Group Theory"
 - Its actually done under a group G
- Two main groups of note:
 - Numbers mod **p** with generator **g**
 - Point addition in an elliptic curve C
 - Usually identified by number, eg. p256, p384 (NSA-developed curves) or Curve25519 (developed by Dan Bernstein, also 256b long)
- So EC (Elliptic Curve) == different group
 - Thought to be harder so fewer bits: 384b ECDHE ?= 3096b DHE
 - But otherwise, its "add EC to the name" for something built on discrete log

But Its Not That Simple

Computer Science 161 Fall 2019

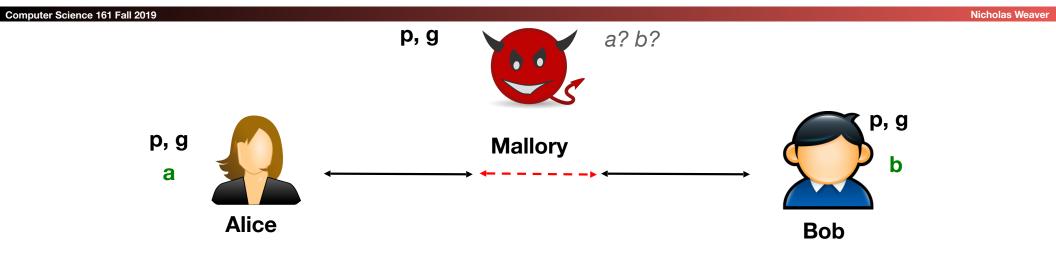
- What if Alice and Bob aren't facing a passive eavesdropper
 - But instead are facing Mallory, an *active* Man-in-the-Middle
- Mallory has the ability to change messages:
 - Can remove messages and add his own
- Lets see... Do you think DHE will still work as-is?

Attacking DHE as a MitM

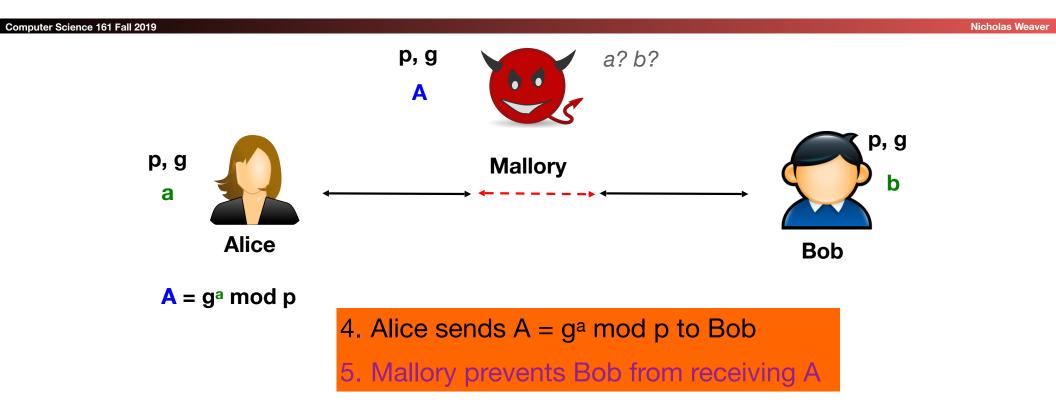


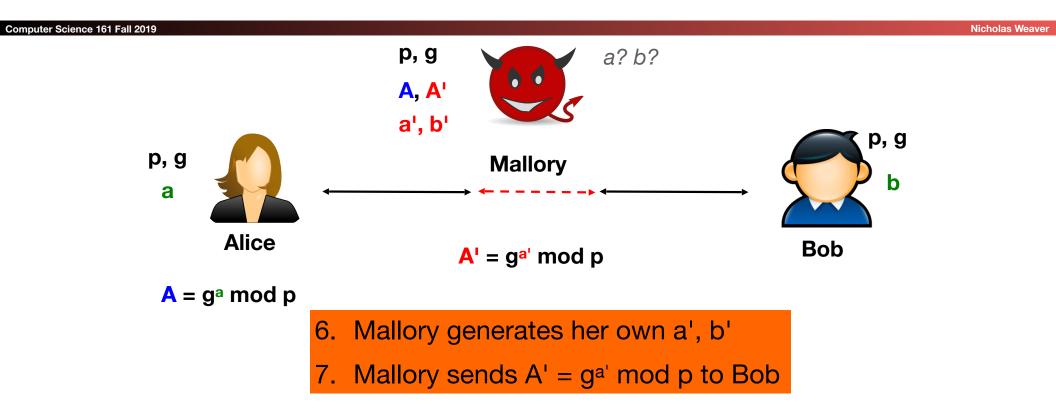
What happens if instead of Eve watching, Alice & Bob face the threat of a hidden Mallory (MITM)?

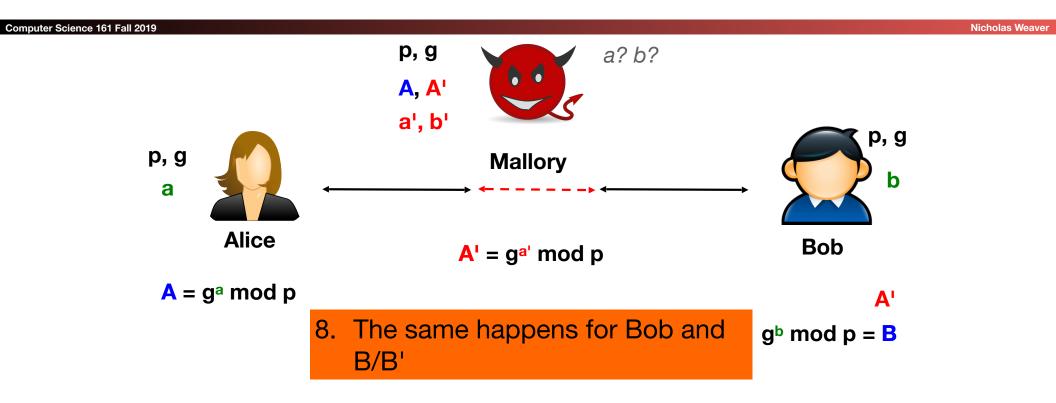
The MitM Key Exchange

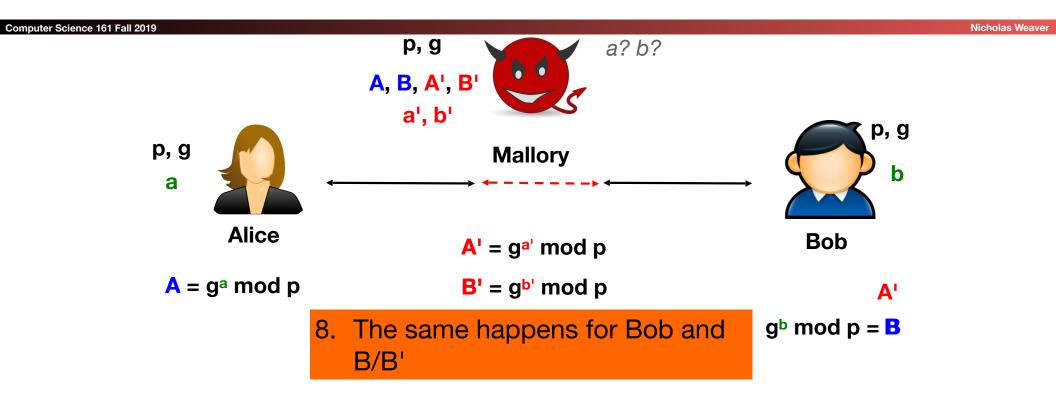


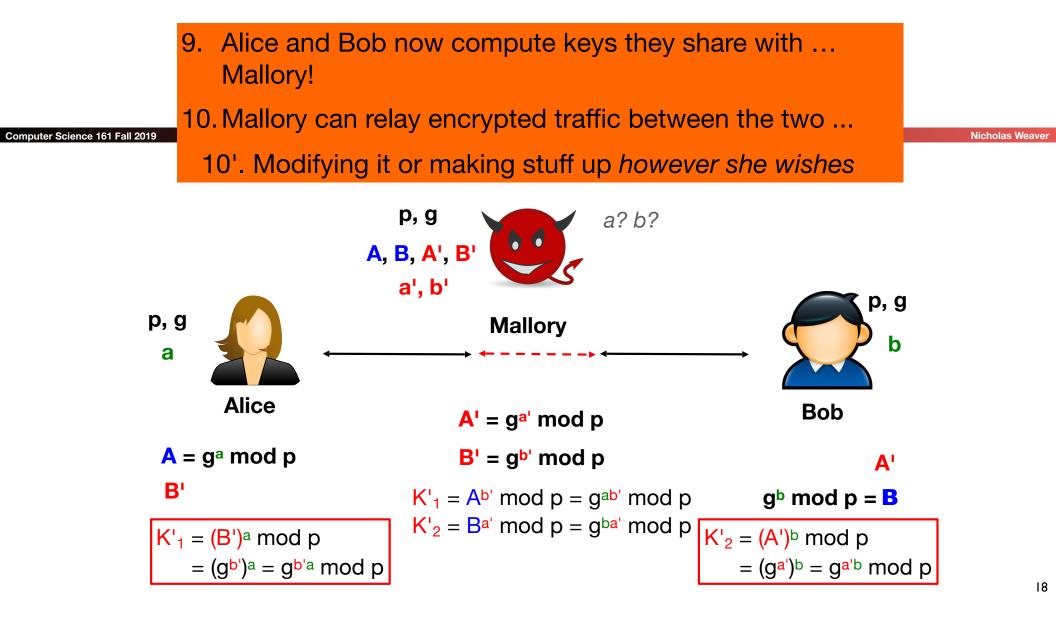
2.Alice picks random secret 'a': 1 < a < p-1
3.Bob picks random secret 'b': 1 < b < p-1











So We Will Want More...

Computer Science 161 Fall 2019

Nicholas Weaver

- This is online:
 - Alice and Bob actually need to be active for this to work...
- So we want offline encryption:
 - Bob can send a message to Alice that Alice can read at a later date
- And authentication:
- Alice can publish a message that Bob can verify was created by Alice later
- Can also be used as a building-block for eliminating the MitM in the DHE key exchange:

Alice authenticates **A**, Bob verifies that he receives **A** not **A'**.

Public Key Cryptography #1: RSA

- Alice generates two *large* primes, p and q
 - They should be generated randomly: Generate a large random number and then use a "primality test": A *probabilistic* algorithm that checks if the number is prime
- Alice then computes $\mathbf{n} = \mathbf{p}^*\mathbf{q}$ and $\mathbf{\phi}(\mathbf{n}) = (\mathbf{p}-\mathbf{1})(\mathbf{q}-\mathbf{1})$
 - $\phi(n)$ is Euler's totient function, in this case for a composite of two primes
- Chose random 2 < e < φ(n)
 - e also needs to be relatively prime to $\phi(n)$ but it can be small
- Solve for d = e⁻¹ mod φ(n)
 - You can't solve for d without knowing φ(n), which requires knowing p and q
- **n**, **e** are public, **d**, **p**, **q**, and **φ(n)** are secret

RSA Encryption

- Bob can easily send a message m to Alice:
 - Bob computes c = m^e mod n
 - Without knowing d, it is believed to be intractable to compute m given c, e, and n
 - But if you can get p and q, you can get d: It is *not known* if there is a way to compute d without also being able to factor n, but it is known that if you can factor n, you can get d.
 - And factoring is *believed* to be hard to do
- Alice computes $\mathbf{m} = \mathbf{c}^d \mod \mathbf{n} = \mathbf{m}^{ed} \mod \mathbf{n}$
- Time for some math magic...

RSA Encryption/Decryption, con't

Computer Science 161 Fall 2019

- So we have: D(C, K_D) = (M^{e·d}) mod n
- Now recall that d is the multiplicative inverse of e, modulo φ(n), and thus:
 - $e \cdot d = 1 \mod \phi(n)$ (by definition)
 - $\mathbf{e} \cdot \mathbf{d} \mathbf{1} = \mathbf{k} \cdot \boldsymbol{\phi}(\mathbf{n})$ for some \mathbf{k}
- Therefore $D(C, K_D) = M^{e \cdot d} \mod n = (M^{e \cdot d-1}) \cdot M \mod n$
 - =(M^{kφ(n)})⋅M mod n
 - = [(M $\phi(n)$)^k]·M mod n
 - =(1^k)·M mod n by Euler's Theorem: $a^{\Phi(n)} \mod n = 1$
 - = M mod n = M

(believed) Eve can recover M from C iff Eve can factor n=p·q

Nicholas Wea

But It Is Not That Simple...

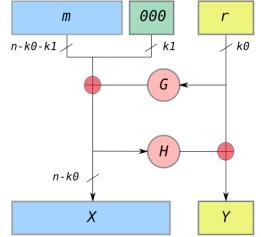
- What if Bob wants to send the same message to Alice twice?
 - Sends me_a mod n_a and then me_a mod n_a
 - Oops, not IND-CPA!
- What if Bob wants to send a message to Alice, Carol, and Dave:
 - m^ea mod na m^eb mod nb m^ec mod nc
 - This ends up leaking information an eavesdropper can use *especially* if 3 = e_a = e_b = e_c!
- Oh, and problems if both **e** and **m** are small...
- As a result, you *can not* just use plain RSA:
 - You need to use a "padding" scheme that makes the input random but reversible

RSA-OAEP (Optimal asymmetric encryption padding)

Computer Science 161 Fall 2019

- A way of processing m with a hash function & random bits
- Effectively "encrypts" m replacing it with X = [m,0...]

 G(r)
 - G and H are hash functions (EG SHA-256)
 k₀ = # of bits of randomness, len(m) + k₁ + k₀ = n
- Then replaces r with $Y = H(G(r) \oplus [m,0...]) \oplus R$
- This structure is called a "Feistel network":
 - It is always designed to be reversible.
 Many block ciphers are based on this concept applied multiple times with G and H being functions of k rather than just fixed operations
- This is more than just block-cipher padding (which involves just adding simple patterns)
 - Instead it serves to both pad the bits and make the data to be encrypted "random"



But Its Not That Simple... Timing Attacks

Computer Science 161 Fall 2019

- Using normal math, the *time* it takes for Alice to decrypt c depends on c and d
 - Ruh roh, this can leak information...
 - More complex RSA implementations take advantage of knowing p and q directly... but also leak timing
- People have used this to guess and then check the bits of **q** on OpenSSL
 - <u>http://crypto.stanford.edu/~dabo/papers/ssl-timing.pdf</u>
- And even more subtle things are possible...

```
x = C
for j = 1 to n
x = mod(x^2, N)
if d_j == 1 then
x = mod(xC, N)
end if
next j
return x
```


So How to Find Bob's Key?

Computer Science 161 Fall 2019

- Lots of stuff later, but for now...
 The Leap of Faith!
- Alice wants to talk to Bob:
 - "Hey, Bob, tell me your public key!"
- Now on all subsequent times...
 - "Hey, Bob, tell me your public key", and check to see if it is different from what Alice remembers
- Works assuming the *first time* Alice talks to Bob there isn't a Man-in-the-Middle
 - ssh uses this

RSA Signatures...

- Alice computes a hash of the message H(m)
 - Alice then computes s = (H(m))^d mod n
- Anyone can then verify
 - v = s^e mod m = ((H(m))^d)^e mod n = H(m)
- Once again, there are "F-U"s...
 - Have to use a proper encoding scheme to do this properly and all sort of other traps
 - One particular trap: a scenario where the attacker can get Alice to repeatedly sign things (an "oracle")

But Signatures Are Super Valuable...

Computer Science 161 Fall 2019

- They are how we can prevent a MitM!
- If Bob knows Alice's key, and Alice knows Bob's...
- How will be "next time"
- Alice doesn't just send a message to Bob...
 - But creates a random key k...
 - Sends E(M,K_{sess}), E(K_{sess},B_{pub}), S(H(M),A_{priv})
- Only Bob can decrypt the message, and Bob can verify the message came from Alice
 - So Mallory is SOL!

RSA Isn't The Only Public Key Algorithm

Computer Science 161 Fall 2019

- Isn't RSA enough?
 - RSA isn't particularly compact or efficient: dealing with 2000b (comfortably secure) or 3000b (NSA-paranoia) bit operations
 - Can we get away with fewer bits?
 - Well, Diffie-Hellman isn't any better...
 - But elliptic curve Diffie-Hellman is
- RSA also had some patent issues
 - So an attempt to build public key algorithms around the Diffie-Hellman problem

El-Gamal

Computer Science 161 Fall 2019

- Just like Diffie-Hellman...
 - Select **p** and **g**
 - These are public and can be shared: Note, they need to be carefully considered how to create p and g... Math beyond the level of this class
- Alice choses **x** randomly as her private key
 - And publishes h = g^x mod p as her public key
- Bob, to encrypt m to Alice...
 - Selects a random y, calculates $c_1 = g^y \mod p$, $s = h^y \mod p = g^{xy} \mod p$
 - s becomes a shared secret between Alice and Bob
 - Maps message m to create m', calculates c₂ = m' * s mod p
- Bob then sends {c₁, c₂}

EI-Gamal Decryption

Computer Science 161 Fall 2019

- Alice first calculates s = c₁ × mod p
 - Then Alice calculates m' = c₂ * s⁻¹ mod p
 - Then Alice calculates the inverse of the mapping to get m
- Of course, there are problems...
 - Attacker can always change m' to 2m'
 - What if Bob screws up and reuses y?
 - c₂ = m₁' * s mod p
 c₂' = m₂' * s mod p
 - Ruh roh, this leaks information:
 c₂ / c₂' = m₁' / m₂'
 - So if you know **m**₁...

In Practice: Session Keys...

Computer Science 161 Fall 2019

- You use the public key algorithm to encrypt/agree on a session key..
 - And then encrypt the real message with the session key
 - You never actually encrypt the message itself with the public key algorithm
- Why?
 - Public key is *slow*... Orders of magnitude slower than symmetric key
 - Public key may cause weird effects:
 - EG, El Gamal where an attacker can change the message to **2m**...
 - If *m* had meaning, this would be a problem
 - But if it just changes the encryption and MAC keys, the main message won't decrypt

DSA Signatures...

- Again, based on Diffie-Hellman
 - Two initial parameters, L and N, and a hash function H
 - L == key length, eg 2048
 N <= len(H), e.g. 256
 - An N-bit prime q, an L-bit prime p such that p 1 is a multiple of q, and g = h^{(p-1)/q} mod p for some arbitrary h (1 < h < p 1)
 - {p, q, g} are public parameters
- Alice creates her own random private key x < q
 - Public key **y** = **g**^x **mod p**

Alice's Signature...

- Create a random value k < q
 - Calculate **r** = (g^k mod p) mod q
 - If **r** = 0, start again
 - Calculate s = k⁻¹ (H(m) + xr) mod q
 - If **s** = 0, start again
 - Signature is {**r**, **s**} (Advantage over an El-Gamal signature variation: Smaller signatures)
- Verification
 - w = s⁻¹ mod q
 - u₁ = H(m) * w mod q
 - u₂ = r * w mod q
 - $v = (g^{u_1}y^{u_2} \mod p) \mod q$
 - Validate that **v** = **r**

But Easy To Screw Up...

- **k** is not just a nonce... It must be random and **secret**
 - If you know **k**, you can calculate **x**
- And even if you just reuse a random k... for two signatures s_a and s_b
 - A bit of algebra proves that $\mathbf{k} = (\mathbf{H}_{A} \mathbf{H}_{B}) / (\mathbf{s}_{a} \mathbf{s}_{b})$
- A good reference:
- How knowing k tells you x:
 <u>https://rdist.root.org/2009/05/17/the-debian-pgp-disaster-that-almost-was/</u>
- How two signatures tells you k: https://rdist.root.org/2010/11/19/dsa-requirements-for-random-k-value/

And **NOT** theoretical: Sony Playstation 3 DRM

- The PS3 was designed to only run signed code
 - They used ECDSA as the signature algorithm
 - This prevents unauthorized code from running
 - They had an *option* to run alternate operating systems (Linux) that they then removed
- Of course this was catnip to reverse engineers
 - Best way to get people interested: *remove* Linux from a device...
- It turns for out one of the key authentication keys used to sign the firmware...
 - Ended up reusing the same k for multiple signatures!

And **NOT** Theoretical: Android RNG Bug + Bitcoin

- OS Vulnerability in 2013 Android "SecureRandom" wasn't actually secure!
 - Not only was it low entropy, it would occasionally return the same value multiple times
- Multiple Bitcoin wallet apps on Android were affected
 - "Pay B Bitcoin to Bob" is signed by Alice's public key using ECDSA
 - Message is broadcast publicly for all to see
 - So you'd have cases where "Pay B to Bob" and "Pay C to Carol" were signed with the same k
- So of course someone scanned for all such Bitcoin transactions

And **Still** Happens! Chromebook

Computer Science 161 Fall 2019

- Chromebooks have a built in "Security key"
 - Enables signatures using 256b ECDSA to validate to particular websites
- There was a bug in the secure hardware!
 - Instead of using a random k that was 256b long, a bug caused it to be 32b long!
 - So an attacker who had a signature could simply try all possible *k* values!
- Fortunately in this case the damage was slight: this is for authenticating to a single website: each site used its own private key
- But still...
- <u>https://www.chromium.org/chromium-os/u2f-ecdsa-vulnerability</u>

So What To Use?

- Paranoids like me: Good libraries and use the parameters from NSA's CNSA suite
 - Open algorithms approved for Top Secret communication
 - Better yet, libraries that implement full protocols that use these under the hood!
- Symmetric cipher: AES: 256b
 - CFB mode, thankyouverymuch. Counter mode and modes which include counter mode can DIAF...
- Hash function: SHA-384
 - Use HMAC for MAC
- RSA: 3072b
- Diffie/Hellman: 3072b
- ECDH/ECDSA: P-384
 - But really, this is extra paranoid, 2048b RSA/DH, 256b EC, 128b AES, SHA-256 excellent in practice