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Our Roadmap...

• Public Key:

• Something everyone can know


• Private Key:

• The secret belonging to a specific person


• Diffie/Hellman:

• Provides key exchange with no pre-shared secret


• ElGamal & RSA:

• Provide a message to a recipient only knowing the recipient's public key


• DSA & RSA signatures:

• Provide a message that anyone can prove was generated with a private key
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Diffie-Hellman Key Exchange

• What if instead they can somehow generate a random key when 
needed?


• Seems impossible in the presence of Eve observing all of their 
communication …

• How can they exchange a key without her learning it?


• But: actually is possible using public-key technology

• Requires that Alice & Bob know that their messages will reach one another without any 

meddling


• Protocol: Diffie-Hellman Key Exchange (DHE)

• The E is "Ephemeral", we use this to create a temporary key for other uses and then 

forget about it
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Diffie-Hellman Key Exchange
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Alice Bob

Eve

1.Everyone agrees in advance on a 
well-known (large) prime p and a 
corresponding g: 1 < g < p-1

p, g

p, g

p, g
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DHE
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Alice Bob

Eve

2.Alice picks random secret ‘a’: 1 < a < p-1 

3.Bob picks random secret ‘b’: 1 < b < p-1

p, g

p, g

p, g

a b

a? b?
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DHE

 6

Alice Bob

Eve

4. Alice sends A = ga mod p to Bob

5. Bob sends B = gb mod p to Alice 

 
Eve sees these

p, g

p, g

p, g

a b

a? b?

A = ga mod pA

A

gb mod p = BB

B
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DHE
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Alice Bob

Eve

6. Alice knows {a, A, B}, computes  
K = Ba mod p = (gb)a = gba mod p 

7. Bob knows {b, A, B}, computes  
K = Ab mod p = (ga)b = gab mod p 

8. K is now the shared secret key.

p, g

p, g

p, g

a b

a? b?

A = ga mod pA

A

gb mod p = BB

B

A
B

K K
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DHE
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Alice Bob

Evep, g

p, g

p, g

a b

a? b?
A
B

K K

While Eve knows {p, g, ga mod p, gb mod p}, believed to be 
computationally infeasible for her to then deduce K = gab mod p. 
She can easily construct A∙B = ga∙gb mod p = ga+b mod p.  
But computing gab requires ability to take discrete logarithms mod p.
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This is Ephemeral Diffie/Hellman

• K = gab mod p is used as the basis for a "session key"

• A symmetric key used to protect subsequent communication between Alice 

and Bob

• In general, public key operations are vastly more expensive than symmetric key, so it 

is mostly used just to agree on secret keys, transmit secret keys, or sign hashes

• If either a or b is random, K is random


• When Alice and Bob are done, they discard K, a, b

• This provides forward secrecy:  Alice and Bob don't retain any information 

that a later attacker who can compromise Alice or Bob's secrets could use to 
decrypt the messages exchanged with K.
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Diffie Hellman is part of more generic problem

• This involved deep mathematical voodoo called "Group Theory"

• Its actually done under a group G


• Two main groups of note:

• Numbers mod p with generator g

• Point addition in an elliptic curve C

• Usually identified by number, eg. p256, p384 (NSA-developed curves) or  

Curve25519 (developed by Dan Bernstein, also 256b long)


• So EC (Elliptic Curve) == different group

• Thought to be harder so fewer bits: 384b ECDHE ?= 3096b DHE

• But otherwise, its "add EC to the name" for something built on discrete log
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But Its Not That Simple

• What if Alice and Bob aren't facing a passive eavesdropper

• But instead are facing Mallory, an active Man-in-the-Middle


• Mallory has the ability to change messages:

• Can remove messages and add his own


• Lets see...  Do you think DHE will still work as-is?
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Attacking DHE

as a MitM
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Alice Bob

p, g

p, g

p, g
Mallory

What happens if instead of Eve 
watching, Alice & Bob face the 
threat of a hidden Mallory 
(MITM)?
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The MitM 
Key Exchange

 13

Alice Bob

p, g

p, g

p, g
Mallory

2.Alice picks random secret ‘a’: 1 < a < p-1 

3.Bob picks random secret ‘b’: 1 < b < p-1

a b

a? b?
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Alice Bob

p, g

p, g

p, g
Mallory

a b

a? b?

4. Alice sends A = ga mod p to Bob

5. Mallory prevents Bob from receiving A

A = ga mod pA

A
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Alice Bob

p, g

p, g

p, g
Mallory

a b

a? b?

6. Mallory generates her own a', b' 
7. Mallory sends A' = ga' mod p to Bob

A = ga mod pA

A, A'
a', b'

A' = ga' mod pA'
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Alice Bob

p, g

p, g

p, g
Mallory

a b

a? b?

8. The same happens for Bob and 
B/B'

A = ga mod pA

A, A'
a', b'

A' = ga' mod pA'

gb mod p = B
A'
B
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Alice Bob

p, g

p, g

p, g
Mallory

a b

a? b?

8. The same happens for Bob and 
B/B'

A = ga mod pA

A, B, A', B'
a', b'

A' = ga' mod pA'

gb mod p = B
A'
B

B’ = gb' mod pB'
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Alice Bob

p, g

p, g

p, g
Mallory

a b

a? b?

9. Alice and Bob now compute keys they share with … 
Mallory! 

10.Mallory can relay encrypted traffic between the two ... 
10'. Modifying it or making stuff up however she wishes

A = ga mod pA

A, B, A', B'
a', b'

A' = ga' mod pA'

gb mod p = B
A'
B

B' = gb' mod p
B'

K'1 = (B')a mod p 
      = (gb')a = gb'a mod p

K'2 = (A')b mod p 
      = (ga')b = ga'b mod p

K'1 = Ab' mod p = gab' mod p 
K'2 = Ba' mod p = gba' mod p
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So We Will Want 
More...
• This is online:

• Alice and Bob actually need to be active for this to work...


• So we want offline encryption:

• Bob can send a message to Alice that Alice can read at a later date


• And authentication:

• Alice can publish a message that Bob can verify was created by Alice later

• Can also be used as a building-block for eliminating the MitM in the DHE key 

exchange: 
Alice authenticates A, Bob verifies that he receives A not A'.
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Public Key Cryptography #1: 
RSA
• Alice generates two large primes, p and q

• They should be generated randomly: 

Generate a large random number and then use a "primality test": 
A probabilistic algorithm that checks if the number is prime


• Alice then computes n = p*q and φ(n) = (p-1)(q-1)  
• φ(n) is Euler's totient function, in this case for a composite of two primes


• Chose random 2 < e < φ(n)

• e also needs to be relatively prime to φ(n) but it can be small


• Solve for d = e-1 mod φ(n) 
• You can't solve for d without knowing φ(n), which requires knowing p and q


• n, e are public, d, p, q, and φ(n) are secret
 20
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RSA Encryption

• Bob can easily send a message m to Alice:

• Bob computes c = me mod n

• Without knowing d, it is believed to be intractable to compute m given c, e, 

and n

• But if you can get p and q, you can get d: 

It is not known if there is a way to compute d without also being able to factor n,  
but it is known that if you can factor n, you can get d.


• And factoring is believed to be hard to do


• Alice computes m = cd mod n = med mod n

• Time for some math magic...
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RSA Encryption/Decryption, con’t

• So we have: D(C, KD) = (Me∙d) mod n 
• Now recall that d is the multiplicative inverse of e, modulo φ(n), and 

thus: 
	e∙d = 1 mod φ(n)    (by definition) 
	e∙d - 1 = k∙φ(n)       for some k


• Therefore D(C, KD) = Me∙d mod n = (Me∙d-1)∙M mod n

=(Mkφ(n))∙M mod n 
=[(Mφ(n))k]∙M mod n 
=(1k)∙M mod n           by Euler’s Theorem: aφ(n) mod n = 1

=M mod n = M

 22(believed) Eve can recover M from C iff Eve can factor n=p∙q
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But It Is Not That Simple...

• What if Bob wants to send the same message to Alice twice?

• Sends mea mod na and then mea mod na

• Oops, not IND-CPA!


• What if Bob wants to send a message to Alice, Carol, and Dave:

• mea mod na 

meb mod nb 
mec mod nc


• This ends up leaking information an  
eavesdropper can use especially if 3 = ea = eb = ec !


• Oh, and problems if both e and m are small...

• As a result, you can not just use plain RSA:

• You need to use a "padding" scheme that makes the  

input random but reversible
 23
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RSA-OAEP  
(Optimal asymmetric encryption padding)
• A way of processing m with a hash function & random 

bits

• Effectively "encrypts" m replacing it with X = [m,0...] ⨁ G(r)

• G and H are hash functions (EG SHA-256) 

k0 = # of bits of randomness, len(m) + k1 + k0 = n

• Then replaces r with Y = H(G(r) ⨁ [m,0...]) ⨁ R 

• This structure is called a "Feistel network":

• It is always designed to be reversible. 

Many block ciphers are based on this concept applied multiple times with G and 
H being functions of k rather than just fixed operations


• This is more than just block-cipher padding (which 
involves just adding simple patterns)

• Instead it serves to both pad the bits and make the data to be encrypted 

"random"
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But Its Not That Simple... 
Timing Attacks
• Using normal math, the time it takes for 

Alice to decrypt c depends on c and d

• Ruh roh, this can leak information...

• More complex RSA implementations take advantage of 

knowing p and q directly... 
but also leak timing


• People have used this to guess and then 
check the bits of q on OpenSSL

• http://crypto.stanford.edu/~dabo/papers/ssl-timing.pdf


• And even more subtle things are possible...

 25

    x = C
    for j = 1 to n
        x = mod(x2, N)
        if dj == 1 then
           x = mod(xC, N) 
        end if
    next j
    return x
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So How to Find Bob's Key?

• Lots of stuff later, but for now... 
The Leap of Faith!


• Alice wants to talk to Bob:

• "Hey, Bob, tell me your public key!"


• Now on all subsequent times...

• "Hey, Bob, tell me your public key", and check to see if it is different from what 

Alice remembers


• Works assuming the first time Alice talks to Bob there isn't a 
Man-in-the-Middle

• ssh uses this

 26
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RSA Signatures...

• Alice computes a hash of the message H(m) 
• Alice then computes s = (H(m))d mod n


• Anyone can then verify 

• v = se mod m = ((H(m))d)e mod n = H(m) 

• Once again, there are "F-U"s...

• Have to use a proper encoding scheme to do 

this properly and all sort of other traps

• One particular trap: a scenario where 

the attacker can get Alice to repeatedly 
sign things (an "oracle")
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But Signatures Are 
Super Valuable...
• They are how we can prevent a MitM!

• If Bob knows Alice's key, and Alice knows Bob's...

• How will be "next time"


• Alice doesn't just send a message to Bob...

• But creates a random key k...

• Sends E(M,Ksess), E(Ksess,Bpub), S(H(M),Apriv)


• Only Bob can decrypt the message, and Bob can verify the 
message came from Alice


• So Mallory is SOL!
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RSA Isn't The Only Public Key Algorithm

• Isn't RSA enough?

• RSA isn't particularly compact or efficient: dealing with 2000b (comfortably 

secure) or 3000b (NSA-paranoia) bit operations

• Can we get away with fewer bits?

• Well, Diffie-Hellman isn't any better...

• But elliptic curve Diffie-Hellman is


• RSA also had some patent issues

• So an attempt to build public key algorithms around the Diffie-Hellman 

problem
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El-Gamal

• Just like Diffie-Hellman...

• Select p and g

• These are public and can be shared: 

Note, they need to be carefully considered how to create p and g... 
Math beyond the level of this class


• Alice choses x randomly as her private key

• And publishes h = gx mod p as her public key


• Bob, to encrypt m to Alice...

• Selects a random y, calculates c1 = gy mod p, s = hy mod p = gxy mod p

• s becomes a shared secret between Alice and Bob


• Maps message m to create m', calculates c2 = m' * s mod p  

• Bob then sends {c1, c2}
 30
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El-Gamal Decryption

• Alice first calculates s = c1x mod p

• Then Alice calculates m' = c2 * s-1 mod p  
• Then Alice calculates the inverse of the mapping to get m


• Of course, there are problems...

• Attacker can always change m' to 2m'

• What if Bob screws up and reuses y?

• c2  = m1' * s mod p 

c2' = m2' * s mod p 
• Ruh roh, this leaks information: 

c2 / c2' = m1' / m2' 
• So if you know m1...
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In Practice: Session Keys...

• You use the public key algorithm to encrypt/agree on a 
session key..


• And then encrypt the real message with the session key

• You never actually encrypt the message itself with the public key algorithm


• Why?

• Public key is slow...  Orders of magnitude slower than symmetric key

• Public key may cause weird effects:

• EG, El Gamal where an attacker can change the message to 2m...

• If m had meaning, this would be a problem

• But if it just changes the encryption and MAC keys, the main message won't decrypt
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DSA Signatures...

• Again, based on Diffie-Hellman

• Two initial parameters, L and N, and a hash function H

• L == key length, eg 2048 

N <= len(H), e.g. 256 
• An N-bit prime q, an L-bit prime p such that p - 1 is a multiple of q, and  

g = h(p-1)/q mod p for some arbitrary h (1 < h < p − 1)

• {p, q, g} are public parameters


• Alice creates her own random private key x < q

• Public key y = gx mod p
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Alice's Signature...

• Create a random value k < q

• Calculate r = (gk mod p) mod q 
• If r = 0, start again


• Calculate s = k-1 (H(m) + xr) mod q

• If s = 0, start again


• Signature is {r, s} (Advantage over an El-Gamal signature variation: Smaller signatures)


• Verification

• w = s-1 mod q 
• u1 = H(m) * w mod q 
• u2 = r * w mod q 
• v = (gu1yu2 mod p) mod q 
• Validate that v = r
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But Easy To Screw Up...

• k is not just a nonce...  It must be random and secret

• If you know k, you can calculate x


• And even if you just reuse a random k... 
for two signatures sa and sb


• A bit of algebra proves that k = (HA – HB) / (sa – sb) 

•  A good reference:

• How knowing k tells you x: 

https://rdist.root.org/2009/05/17/the-debian-pgp-disaster-that-almost-was/

• How two signatures tells you k: 

https://rdist.root.org/2010/11/19/dsa-requirements-for-random-k-value/
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And NOT theoretical: 
Sony Playstation 3 DRM
• The PS3 was designed to only run signed 

code

• They used ECDSA as the signature algorithm

• This prevents unauthorized code from running

• They had an option to run alternate operating systems 

(Linux) that they then removed 


• Of course this was catnip to reverse engineers

• Best way to get people interested: 

remove Linux from a device...


• It turns for out one of the key authentication 
keys used to sign the firmware...

• Ended up reusing the same k for multiple signatures!
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And NOT Theoretical: 
Android RNG Bug + Bitcoin
• OS Vulnerability in 2013 

Android "SecureRandom" wasn't actually secure!

• Not only was it low entropy, it would occasionally return the 

same value multiple times


• Multiple Bitcoin wallet apps on Android were 
affected

• "Pay B Bitcoin to Bob" is signed by Alice's public key using 

ECDSA

• Message is broadcast publicly for all to see


• So you'd have cases where "Pay B to Bob" and  
"Pay C to Carol" were signed with the same k


• So of course someone scanned for all such  
Bitcoin transactions
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And Still Happens! 
Chromebook 
• Chromebooks have a built in "Security key"

• Enables signatures using 256b ECDSA to validate to particular websites


• There was a bug in the secure hardware!

• Instead of using a random k that was 256b long, a bug caused it to be 32b long!

• So an attacker who had a signature could simply try all possible k values!


• Fortunately in this case the damage 
was slight: this is for authenticating to  
a single website: each site used its own 
private key


• But still...

• https://www.chromium.org/chromium-os/u2f-ecdsa-vulnerability
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So What To Use?

• Paranoids like me: 
Good libraries and use the parameters from NSA's CNSA suite

• Open algorithms approved for Top Secret communication

• Better yet, libraries that implement full protocols that use these under the hood!


• Symmetric cipher: AES: 256b

• CFB mode, thankyouverymuch.  Counter mode and modes which include counter mode can DIAF...


• Hash function: SHA-384

• Use HMAC for MAC


• RSA: 3072b

• Diffie/Hellman: 3072b

• ECDH/ECDSA: P-384

• But really, this is extra paranoid, 2048b RSA/DH, 256b EC, 128b AES, SHA-256 excellent in practice
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