
Computer Science 161 Fall 2019 Nicholas Weaver

Public Key

 1-@MattBlaze



Computer Science 161 Fall 2019 Nicholas Weaver

Our Roadmap...

• Public Key:

• Something everyone can know


• Private Key:

• The secret belonging to a specific person


• Diffie/Hellman:

• Provides key exchange with no pre-shared secret


• ElGamal & RSA:

• Provide a message to a recipient only knowing the recipient's public key


• DSA & RSA signatures:

• Provide a message that anyone can prove was generated with a private key

 2



Computer Science 161 Fall 2019 Nicholas Weaver

Diffie-Hellman Key Exchange

• What if instead they can somehow generate a random key when 
needed?


• Seems impossible in the presence of Eve observing all of their 
communication …

• How can they exchange a key without her learning it?


• But: actually is possible using public-key technology

• Requires that Alice & Bob know that their messages will reach one another without any 

meddling


• Protocol: Diffie-Hellman Key Exchange (DHE)

• The E is "Ephemeral", we use this to create a temporary key for other uses and then 

forget about it
 3



Computer Science 161 Fall 2019 Nicholas Weaver

Diffie-Hellman Key Exchange

 4

Alice Bob

Eve

1.Everyone agrees in advance on a 
well-known (large) prime p and a 
corresponding g: 1 < g < p-1

p, g

p, g

p, g



Computer Science 161 Fall 2019 Nicholas Weaver

DHE

 5

Alice Bob

Eve

2.Alice picks random secret ‘a’: 1 < a < p-1 

3.Bob picks random secret ‘b’: 1 < b < p-1

p, g

p, g

p, g

a b

a? b?



Computer Science 161 Fall 2019 Nicholas Weaver

DHE

 6

Alice Bob

Eve

4. Alice sends A = ga mod p to Bob

5. Bob sends B = gb mod p to Alice 

 
Eve sees these

p, g

p, g

p, g

a b

a? b?

A = ga mod pA

A

gb mod p = BB

B



Computer Science 161 Fall 2019 Nicholas Weaver

DHE

 7

Alice Bob

Eve

6. Alice knows {a, A, B}, computes  
K = Ba mod p = (gb)a = gba mod p 

7. Bob knows {b, A, B}, computes  
K = Ab mod p = (ga)b = gab mod p 

8. K is now the shared secret key.

p, g

p, g

p, g

a b

a? b?

A = ga mod pA

A

gb mod p = BB

B

A
B

K K



Computer Science 161 Fall 2019 Nicholas Weaver

DHE

 8

Alice Bob

Evep, g

p, g

p, g

a b

a? b?
A
B

K K

While Eve knows {p, g, ga mod p, gb mod p}, believed to be 
computationally infeasible for her to then deduce K = gab mod p. 
She can easily construct A∙B = ga∙gb mod p = ga+b mod p.  
But computing gab requires ability to take discrete logarithms mod p.



Computer Science 161 Fall 2019 Nicholas Weaver

This is Ephemeral Diffie/Hellman

• K = gab mod p is used as the basis for a "session key"

• A symmetric key used to protect subsequent communication between Alice 

and Bob

• In general, public key operations are vastly more expensive than symmetric key, so it 

is mostly used just to agree on secret keys, transmit secret keys, or sign hashes

• If either a or b is random, K is random


• When Alice and Bob are done, they discard K, a, b

• This provides forward secrecy:  Alice and Bob don't retain any information 

that a later attacker who can compromise Alice or Bob's secrets could use to 
decrypt the messages exchanged with K.

 9



Computer Science 161 Fall 2019 Nicholas Weaver

Diffie Hellman is part of more generic problem

• This involved deep mathematical voodoo called "Group Theory"

• Its actually done under a group G


• Two main groups of note:

• Numbers mod p with generator g

• Point addition in an elliptic curve C

• Usually identified by number, eg. p256, p384 (NSA-developed curves) or  

Curve25519 (developed by Dan Bernstein, also 256b long)


• So EC (Elliptic Curve) == different group

• Thought to be harder so fewer bits: 384b ECDHE ?= 3096b DHE

• But otherwise, its "add EC to the name" for something built on discrete log

 10



Computer Science 161 Fall 2019 Nicholas Weaver

But Its Not That Simple

• What if Alice and Bob aren't facing a passive eavesdropper

• But instead are facing Mallory, an active Man-in-the-Middle


• Mallory has the ability to change messages:

• Can remove messages and add his own


• Lets see...  Do you think DHE will still work as-is?

 11



Computer Science 161 Fall 2019 Nicholas Weaver

Attacking DHE

as a MitM

 12

Alice Bob

p, g

p, g

p, g
Mallory

What happens if instead of Eve 
watching, Alice & Bob face the 
threat of a hidden Mallory 
(MITM)?



Computer Science 161 Fall 2019 Nicholas Weaver

The MitM 
Key Exchange

 13

Alice Bob

p, g

p, g

p, g
Mallory

2.Alice picks random secret ‘a’: 1 < a < p-1 

3.Bob picks random secret ‘b’: 1 < b < p-1

a b

a? b?



Computer Science 161 Fall 2019 Nicholas Weaver

 14

Alice Bob

p, g

p, g

p, g
Mallory

a b

a? b?

4. Alice sends A = ga mod p to Bob

5. Mallory prevents Bob from receiving A

A = ga mod pA

A



Computer Science 161 Fall 2019 Nicholas Weaver

 15

Alice Bob

p, g

p, g

p, g
Mallory

a b

a? b?

6. Mallory generates her own a', b' 
7. Mallory sends A' = ga' mod p to Bob

A = ga mod pA

A, A'
a', b'

A' = ga' mod pA'



Computer Science 161 Fall 2019 Nicholas Weaver

 16

Alice Bob

p, g

p, g

p, g
Mallory

a b

a? b?

8. The same happens for Bob and 
B/B'

A = ga mod pA

A, A'
a', b'

A' = ga' mod pA'

gb mod p = B
A'
B



Computer Science 161 Fall 2019 Nicholas Weaver

 17

Alice Bob

p, g

p, g

p, g
Mallory

a b

a? b?

8. The same happens for Bob and 
B/B'

A = ga mod pA

A, B, A', B'
a', b'

A' = ga' mod pA'

gb mod p = B
A'
B

B’ = gb' mod pB'



Computer Science 161 Fall 2019 Nicholas Weaver

 18

Alice Bob

p, g

p, g

p, g
Mallory

a b

a? b?

9. Alice and Bob now compute keys they share with … 
Mallory! 

10.Mallory can relay encrypted traffic between the two ... 
10'. Modifying it or making stuff up however she wishes

A = ga mod pA

A, B, A', B'
a', b'

A' = ga' mod pA'

gb mod p = B
A'
B

B' = gb' mod p
B'

K'1 = (B')a mod p 
      = (gb')a = gb'a mod p

K'2 = (A')b mod p 
      = (ga')b = ga'b mod p

K'1 = Ab' mod p = gab' mod p 
K'2 = Ba' mod p = gba' mod p



Computer Science 161 Fall 2019 Nicholas Weaver

So We Will Want 
More...
• This is online:

• Alice and Bob actually need to be active for this to work...


• So we want offline encryption:

• Bob can send a message to Alice that Alice can read at a later date


• And authentication:

• Alice can publish a message that Bob can verify was created by Alice later

• Can also be used as a building-block for eliminating the MitM in the DHE key 

exchange: 
Alice authenticates A, Bob verifies that he receives A not A'.

 19



Computer Science 161 Fall 2019 Nicholas Weaver

Public Key Cryptography #1: 
RSA
• Alice generates two large primes, p and q

• They should be generated randomly: 

Generate a large random number and then use a "primality test": 
A probabilistic algorithm that checks if the number is prime


• Alice then computes n = p*q and φ(n) = (p-1)(q-1)  
• φ(n) is Euler's totient function, in this case for a composite of two primes


• Chose random 2 < e < φ(n)

• e also needs to be relatively prime to φ(n) but it can be small


• Solve for d = e-1 mod φ(n) 
• You can't solve for d without knowing φ(n), which requires knowing p and q


• n, e are public, d, p, q, and φ(n) are secret
 20



Computer Science 161 Fall 2019 Nicholas Weaver

RSA Encryption

• Bob can easily send a message m to Alice:

• Bob computes c = me mod n

• Without knowing d, it is believed to be intractable to compute m given c, e, 

and n

• But if you can get p and q, you can get d: 

It is not known if there is a way to compute d without also being able to factor n,  
but it is known that if you can factor n, you can get d.


• And factoring is believed to be hard to do


• Alice computes m = cd mod n = med mod n

• Time for some math magic...

 21



Computer Science 161 Fall 2019 Nicholas Weaver

RSA Encryption/Decryption, con’t

• So we have: D(C, KD) = (Me∙d) mod n 
• Now recall that d is the multiplicative inverse of e, modulo φ(n), and 

thus: 
	e∙d = 1 mod φ(n)    (by definition) 
	e∙d - 1 = k∙φ(n)       for some k


• Therefore D(C, KD) = Me∙d mod n = (Me∙d-1)∙M mod n

=(Mkφ(n))∙M mod n 
=[(Mφ(n))k]∙M mod n 
=(1k)∙M mod n           by Euler’s Theorem: aφ(n) mod n = 1

=M mod n = M

 22(believed) Eve can recover M from C iff Eve can factor n=p∙q



Computer Science 161 Fall 2019 Nicholas Weaver

But It Is Not That Simple...

• What if Bob wants to send the same message to Alice twice?

• Sends mea mod na and then mea mod na

• Oops, not IND-CPA!


• What if Bob wants to send a message to Alice, Carol, and Dave:

• mea mod na 

meb mod nb 
mec mod nc


• This ends up leaking information an  
eavesdropper can use especially if 3 = ea = eb = ec !


• Oh, and problems if both e and m are small...

• As a result, you can not just use plain RSA:

• You need to use a "padding" scheme that makes the  

input random but reversible
 23



Computer Science 161 Fall 2019 Nicholas Weaver

RSA-OAEP  
(Optimal asymmetric encryption padding)
• A way of processing m with a hash function & random 

bits

• Effectively "encrypts" m replacing it with X = [m,0...] ⨁ G(r)

• G and H are hash functions (EG SHA-256) 

k0 = # of bits of randomness, len(m) + k1 + k0 = n

• Then replaces r with Y = H(G(r) ⨁ [m,0...]) ⨁ R 

• This structure is called a "Feistel network":

• It is always designed to be reversible. 

Many block ciphers are based on this concept applied multiple times with G and 
H being functions of k rather than just fixed operations


• This is more than just block-cipher padding (which 
involves just adding simple patterns)

• Instead it serves to both pad the bits and make the data to be encrypted 

"random"
 24



Computer Science 161 Fall 2019 Nicholas Weaver

But Its Not That Simple... 
Timing Attacks
• Using normal math, the time it takes for 

Alice to decrypt c depends on c and d

• Ruh roh, this can leak information...

• More complex RSA implementations take advantage of 

knowing p and q directly... 
but also leak timing


• People have used this to guess and then 
check the bits of q on OpenSSL

• http://crypto.stanford.edu/~dabo/papers/ssl-timing.pdf


• And even more subtle things are possible...

 25

    x = C
    for j = 1 to n
        x = mod(x2, N)
        if dj == 1 then
           x = mod(xC, N) 
        end if
    next j
    return x



Computer Science 161 Fall 2019 Nicholas Weaver

So How to Find Bob's Key?

• Lots of stuff later, but for now... 
The Leap of Faith!


• Alice wants to talk to Bob:

• "Hey, Bob, tell me your public key!"


• Now on all subsequent times...

• "Hey, Bob, tell me your public key", and check to see if it is different from what 

Alice remembers


• Works assuming the first time Alice talks to Bob there isn't a 
Man-in-the-Middle

• ssh uses this

 26



Computer Science 161 Fall 2019 Nicholas Weaver

RSA Signatures...

• Alice computes a hash of the message H(m) 
• Alice then computes s = (H(m))d mod n


• Anyone can then verify 

• v = se mod m = ((H(m))d)e mod n = H(m) 

• Once again, there are "F-U"s...

• Have to use a proper encoding scheme to do 

this properly and all sort of other traps

• One particular trap: a scenario where 

the attacker can get Alice to repeatedly 
sign things (an "oracle")

 27



Computer Science 161 Fall 2019 Nicholas Weaver

But Signatures Are 
Super Valuable...
• They are how we can prevent a MitM!

• If Bob knows Alice's key, and Alice knows Bob's...

• How will be "next time"


• Alice doesn't just send a message to Bob...

• But creates a random key k...

• Sends E(M,Ksess), E(Ksess,Bpub), S(H(M),Apriv)


• Only Bob can decrypt the message, and Bob can verify the 
message came from Alice


• So Mallory is SOL!
 28



Computer Science 161 Fall 2019 Nicholas Weaver

RSA Isn't The Only Public Key Algorithm

• Isn't RSA enough?

• RSA isn't particularly compact or efficient: dealing with 2000b (comfortably 

secure) or 3000b (NSA-paranoia) bit operations

• Can we get away with fewer bits?

• Well, Diffie-Hellman isn't any better...

• But elliptic curve Diffie-Hellman is


• RSA also had some patent issues

• So an attempt to build public key algorithms around the Diffie-Hellman 

problem

 29



Computer Science 161 Fall 2019 Nicholas Weaver

El-Gamal

• Just like Diffie-Hellman...

• Select p and g

• These are public and can be shared: 

Note, they need to be carefully considered how to create p and g... 
Math beyond the level of this class


• Alice choses x randomly as her private key

• And publishes h = gx mod p as her public key


• Bob, to encrypt m to Alice...

• Selects a random y, calculates c1 = gy mod p, s = hy mod p = gxy mod p

• s becomes a shared secret between Alice and Bob


• Maps message m to create m', calculates c2 = m' * s mod p  

• Bob then sends {c1, c2}
 30



Computer Science 161 Fall 2019 Nicholas Weaver

El-Gamal Decryption

• Alice first calculates s = c1x mod p

• Then Alice calculates m' = c2 * s-1 mod p  
• Then Alice calculates the inverse of the mapping to get m


• Of course, there are problems...

• Attacker can always change m' to 2m'

• What if Bob screws up and reuses y?

• c2  = m1' * s mod p 

c2' = m2' * s mod p 
• Ruh roh, this leaks information: 

c2 / c2' = m1' / m2' 
• So if you know m1...

 31



Computer Science 161 Fall 2019 Nicholas Weaver

In Practice: Session Keys...

• You use the public key algorithm to encrypt/agree on a 
session key..


• And then encrypt the real message with the session key

• You never actually encrypt the message itself with the public key algorithm


• Why?

• Public key is slow...  Orders of magnitude slower than symmetric key

• Public key may cause weird effects:

• EG, El Gamal where an attacker can change the message to 2m...

• If m had meaning, this would be a problem

• But if it just changes the encryption and MAC keys, the main message won't decrypt

 32



Computer Science 161 Fall 2019 Nicholas Weaver

DSA Signatures...

• Again, based on Diffie-Hellman

• Two initial parameters, L and N, and a hash function H

• L == key length, eg 2048 

N <= len(H), e.g. 256 
• An N-bit prime q, an L-bit prime p such that p - 1 is a multiple of q, and  

g = h(p-1)/q mod p for some arbitrary h (1 < h < p − 1)

• {p, q, g} are public parameters


• Alice creates her own random private key x < q

• Public key y = gx mod p

 33



Computer Science 161 Fall 2019 Nicholas Weaver

Alice's Signature...

• Create a random value k < q

• Calculate r = (gk mod p) mod q 
• If r = 0, start again


• Calculate s = k-1 (H(m) + xr) mod q

• If s = 0, start again


• Signature is {r, s} (Advantage over an El-Gamal signature variation: Smaller signatures)


• Verification

• w = s-1 mod q 
• u1 = H(m) * w mod q 
• u2 = r * w mod q 
• v = (gu1yu2 mod p) mod q 
• Validate that v = r

 34



Computer Science 161 Fall 2019 Nicholas Weaver

But Easy To Screw Up...

• k is not just a nonce...  It must be random and secret

• If you know k, you can calculate x


• And even if you just reuse a random k... 
for two signatures sa and sb


• A bit of algebra proves that k = (HA – HB) / (sa – sb) 

•  A good reference:

• How knowing k tells you x: 

https://rdist.root.org/2009/05/17/the-debian-pgp-disaster-that-almost-was/

• How two signatures tells you k: 

https://rdist.root.org/2010/11/19/dsa-requirements-for-random-k-value/

 35



Computer Science 161 Fall 2019 Nicholas Weaver

And NOT theoretical: 
Sony Playstation 3 DRM
• The PS3 was designed to only run signed 

code

• They used ECDSA as the signature algorithm

• This prevents unauthorized code from running

• They had an option to run alternate operating systems 

(Linux) that they then removed 


• Of course this was catnip to reverse engineers

• Best way to get people interested: 

remove Linux from a device...


• It turns for out one of the key authentication 
keys used to sign the firmware...

• Ended up reusing the same k for multiple signatures!

 36



Computer Science 161 Fall 2019 Nicholas Weaver

And NOT Theoretical: 
Android RNG Bug + Bitcoin
• OS Vulnerability in 2013 

Android "SecureRandom" wasn't actually secure!

• Not only was it low entropy, it would occasionally return the 

same value multiple times


• Multiple Bitcoin wallet apps on Android were 
affected

• "Pay B Bitcoin to Bob" is signed by Alice's public key using 

ECDSA

• Message is broadcast publicly for all to see


• So you'd have cases where "Pay B to Bob" and  
"Pay C to Carol" were signed with the same k


• So of course someone scanned for all such  
Bitcoin transactions

 37



Computer Science 161 Fall 2019 Nicholas Weaver

And Still Happens! 
Chromebook 
• Chromebooks have a built in "Security key"

• Enables signatures using 256b ECDSA to validate to particular websites


• There was a bug in the secure hardware!

• Instead of using a random k that was 256b long, a bug caused it to be 32b long!

• So an attacker who had a signature could simply try all possible k values!


• Fortunately in this case the damage 
was slight: this is for authenticating to  
a single website: each site used its own 
private key


• But still...

• https://www.chromium.org/chromium-os/u2f-ecdsa-vulnerability

 38



Computer Science 161 Fall 2019 Nicholas Weaver

So What To Use?

• Paranoids like me: 
Good libraries and use the parameters from NSA's CNSA suite

• Open algorithms approved for Top Secret communication

• Better yet, libraries that implement full protocols that use these under the hood!


• Symmetric cipher: AES: 256b

• CFB mode, thankyouverymuch.  Counter mode and modes which include counter mode can DIAF...


• Hash function: SHA-384

• Use HMAC for MAC


• RSA: 3072b

• Diffie/Hellman: 3072b

• ECDH/ECDSA: P-384

• But really, this is extra paranoid, 2048b RSA/DH, 256b EC, 128b AES, SHA-256 excellent in practice

 39


