Key (mis)Management Applied Crypto and Crapto

How Can We Communicate With Someone New?

Computer Science 161 Fall 2019

- Public-key crypto gives us amazing capabilities to achieve confidentiality, integrity & authentication without shared secrets ...
- But how do we solve MITM attacks?
- How can we trust we have the true public key for someone we want to communicate with?
- Ideas?

Trusted Authorities

Computer Science 161 Fall 2019

- Suppose there's a party that everyone agrees to trust to confirm each individual's public key
- Say the Governor of California
- Issues with this approach?
 - How can everyone agree to trust them?
 - Scaling: huge amount of work; single point of failure ...
 - ... and thus Denial-of-Service concerns
 - How do you know you're talking to the right authority??

3

Trust Anchors

Computer Science 161 Fall 2019

Nicholas Weaver

 Suppose the trusted party distributes their key so everyone has it ...

Trust Anchors

Computer Science 161 Fall 2019

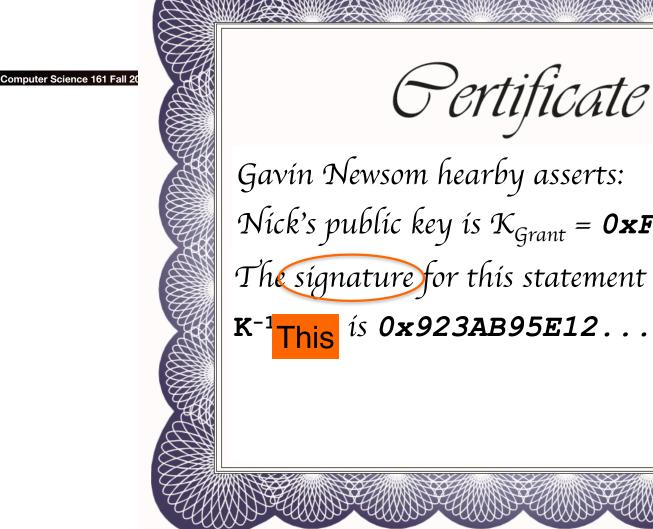
- Suppose the trusted party distributes their key so everyone has it ...
- We can then use this to bootstrap trust
 - As long as we have confidence in the decisions that that party makes

Digital Certificates

omputer Science 161 Fall 2019

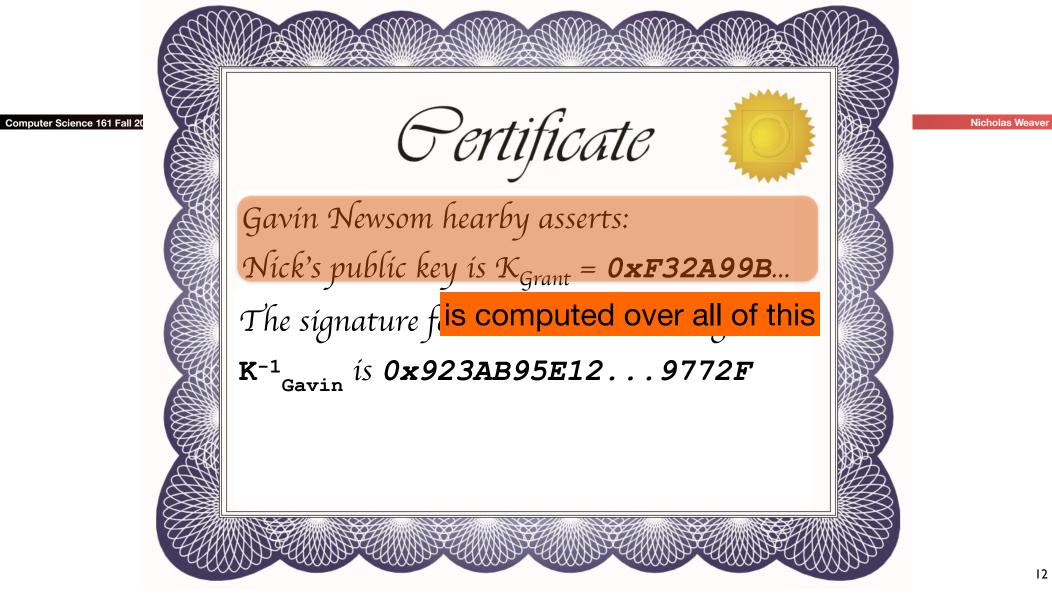
- Certificate ("cert") = signed claim about someone's public key
 - More broadly: a signed attestation about some claim
- Notation:

 { M }_K = "message M encrypted with public key k"
 { M }_{K⁻¹} = "message M signed w/ private key for K"
- E.g. M = "Nick's public key is K_{Nick} = 0xF32A99B..." Cert: M,


{ "Nick's public key ... *0xF32A99B*..." }_K -1_{Gavin}

= 0x923AB95E12...9772F

Computer Science 161 Fall 2


Pertificate

Gavín Newsom hearby asserts: Níck's public key ís K_{Grant} = **0xF32A99B**... The signature for this statement using K⁻¹_{Gavin} ís **0x923AB95E12...9772F**

Gavín Newsom hearby asserts: Níck's public key is $\mathcal{K}_{Grant} = \mathbf{0xF32A99B}...$ The signature for this statement using K⁻¹This *is 0x923AB95E12...9772F*

Computer Science 161 Fall 20

Pertificate

Gavín Newsom hearby asserts: Níck's public key is K_{Grant} = **0xF32A99B**... The signature for this statement using K⁻¹_{Gavin} is **0x923AB95E12...9772F**

and can be *validated* using:

If We Find This Cert Shoved Under Our Door ...

Computer Science 161 Fall 2019

- What can we figure out?
 - If we know Gavin's key, then whether he indeed signed the statement
 - If we trust Gavin's decisions, then we have confidence we really have Nick's key
- Trust = ?
 - Gavin won't willy-nilly sign such statements
 - Gavin won't let his private key be stolen

Analyzing Certs Shoved Under Doors ...

Computer Science 161 Fall 2019

- *How* we get the cert doesn't affect its utility
- Who gives us the cert doesn't matter
 - They're not any more or less trustworthy because they did
 - Possessing a cert doesn't establish any identity!
- However: if someone demonstrates they can decrypt data encrypted with K_{nick}, then we have high confidence they possess K⁻¹_{Nick}
 - Same for if they show they can sign "using" K⁻¹Nick

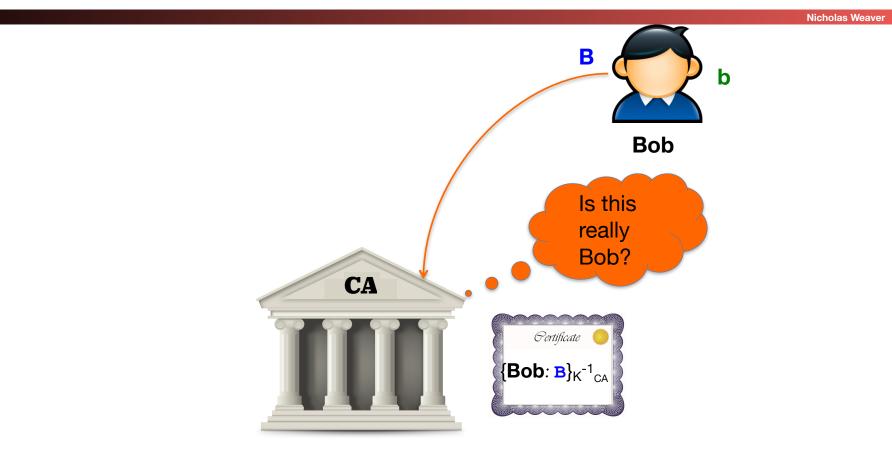
Scaling Digital Certificates

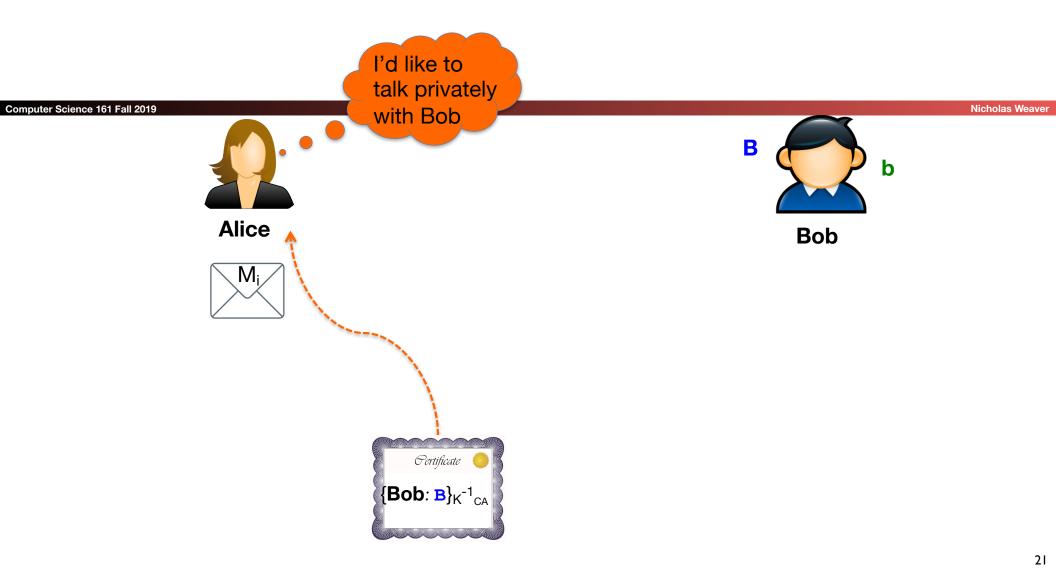
Computer Science 161 Fall 2019

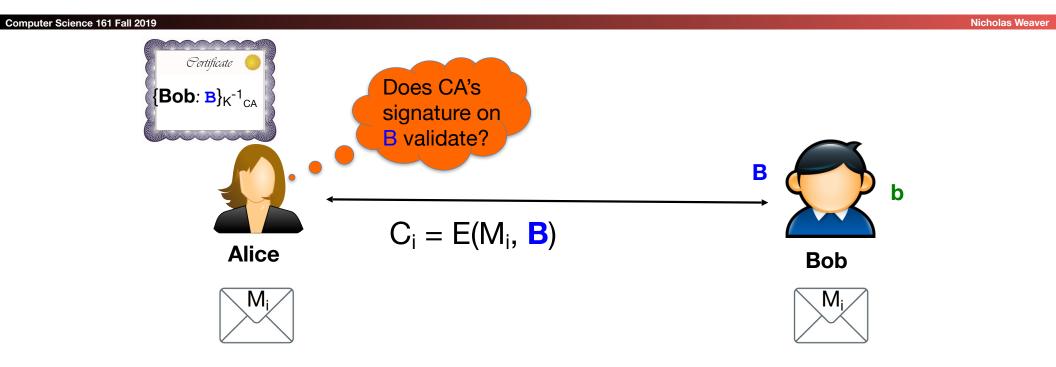
- How can this possibly scale? Surely Gavin can't sign everyone's public key!
- Approach #1: Introduce hierarchy via delegation
 - { "Janet Napolitano's public key is 0x... and I trust her to vouch for UC" }K ⁻¹Gavin
 - { "Carol Christ's public key is 0x... and I trust him to vouch for UCB" }K ⁻¹Janet
 - { "John Canny's public key is 0x... and I trust him to vouch for EECS" K^{-1} Carol
 - { "Nick Weaver's public key is 0x..." }K -1 John

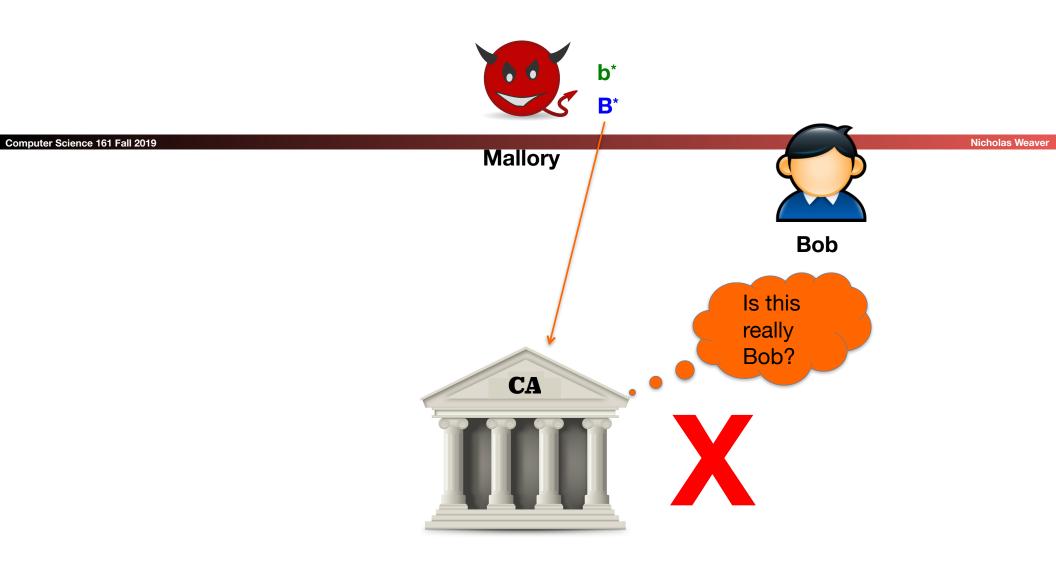
Scaling Digital Certificates, con't

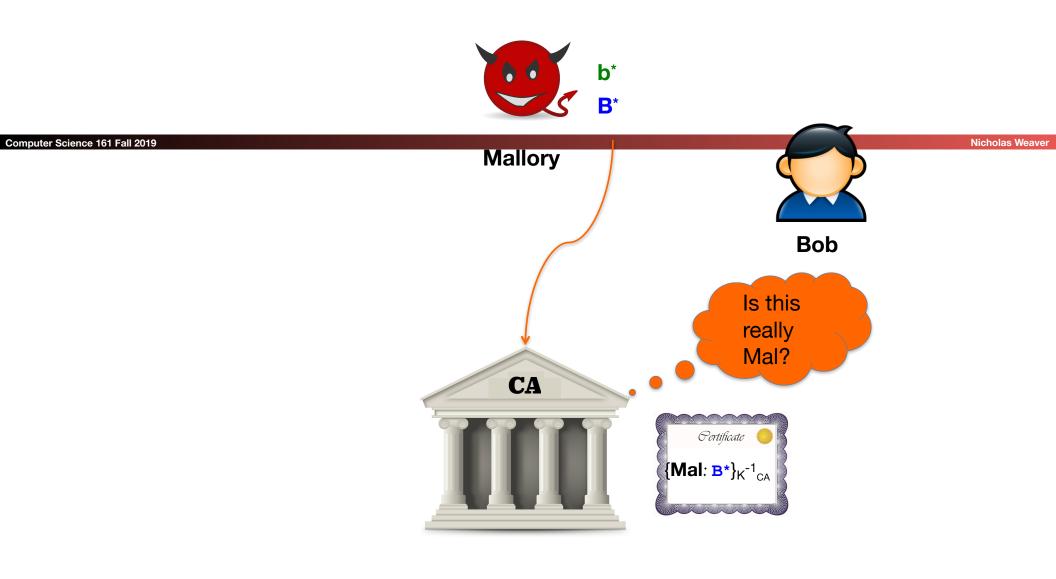
Computer Science 161 Fall 2019

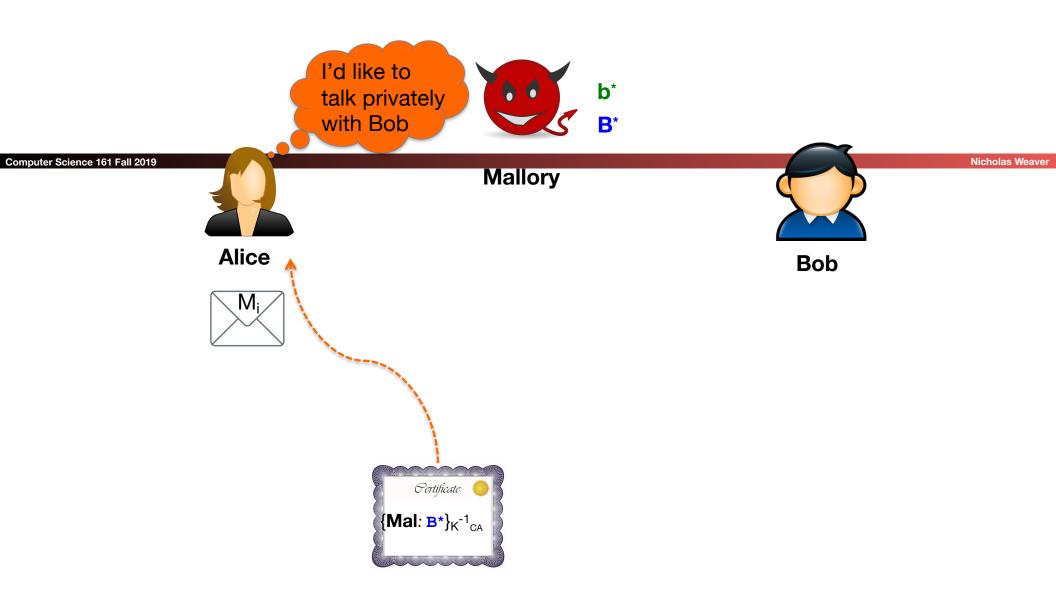

- Nick puts this last on his web page
 - (or shoves it under your door)
- Anyone who can gather the intermediary keys can validate the chain
 - They can get these (other than Gavin's) from anywhere because they can validate them, too
- Approach #2: have multiple trusted parties who are in the business of signing certs ...
 - (The certs might also be hierarchical, per Approach #1)

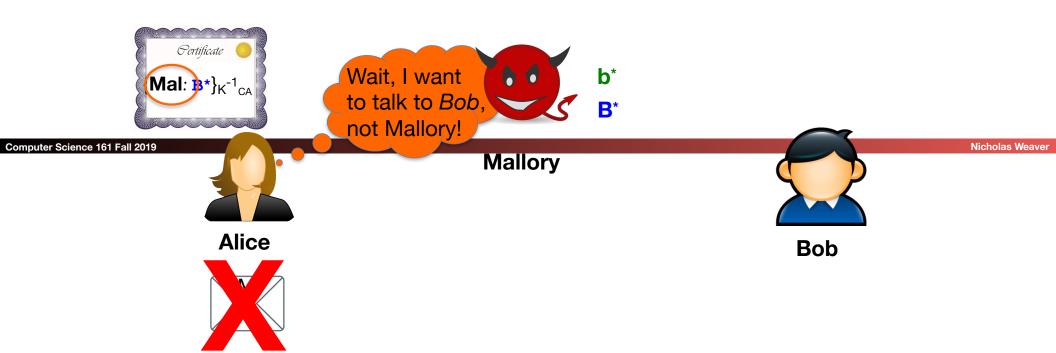

Certificate Authorities

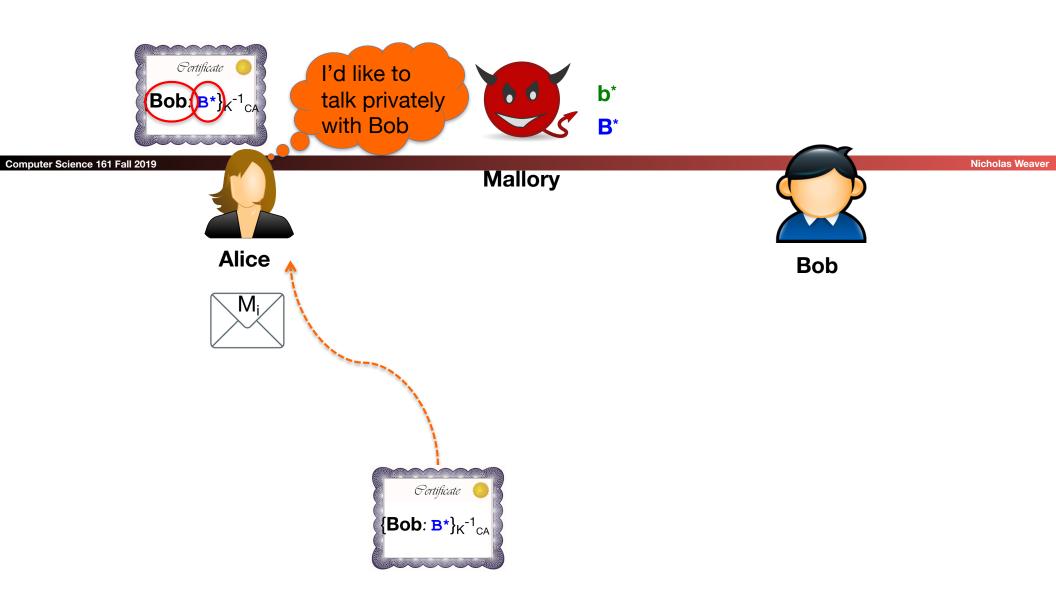

Computer Science 161 Fall 2019


- CAs are trusted parties in a Public Key Infrastructure (PKI)
- They can operate offline
 - They sign ("cut") certs when convenient, not on-the-fly (... though see below ...)
- Suppose Alice wants to communicate confidentially w/ Bob:
 - Bob gets a CA to issue {Bob's public key is B} K ⁻¹CA
 - Alice gets Bob's cert any old way
 - Alice uses her known value of K_{CA} to verify cert's signature
 - Alice extracts B, sends {M}K_B to Bob









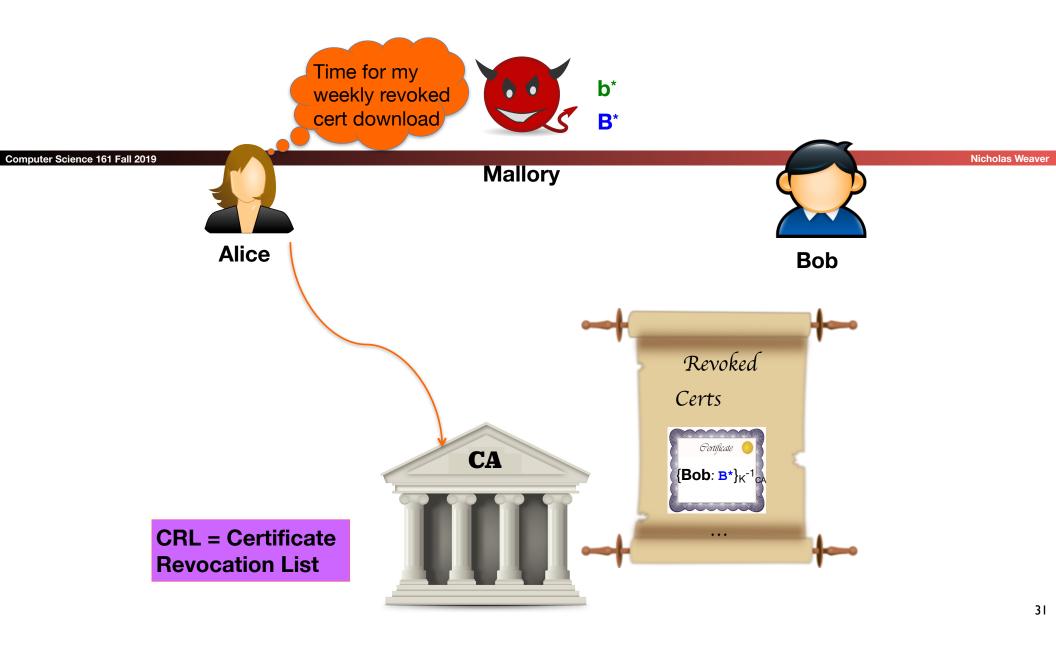
Computer Science 161 Fall 2019

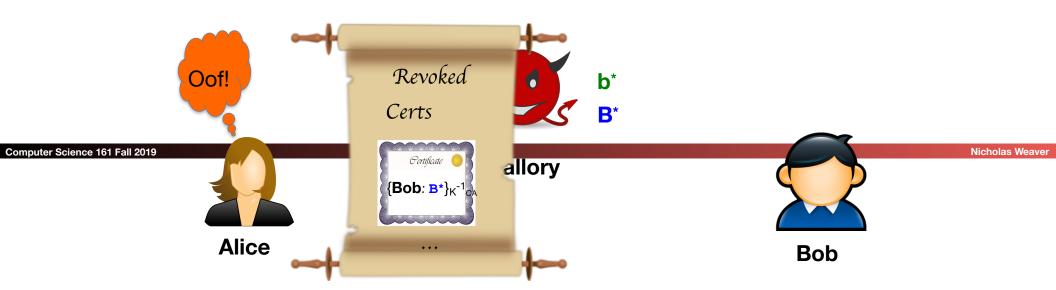
Nicholas Weaver

 What do we do if a CA screws up and issues a cert in Bob's name to Mallory?

Revocation

Computer Science 161 Fall 2019

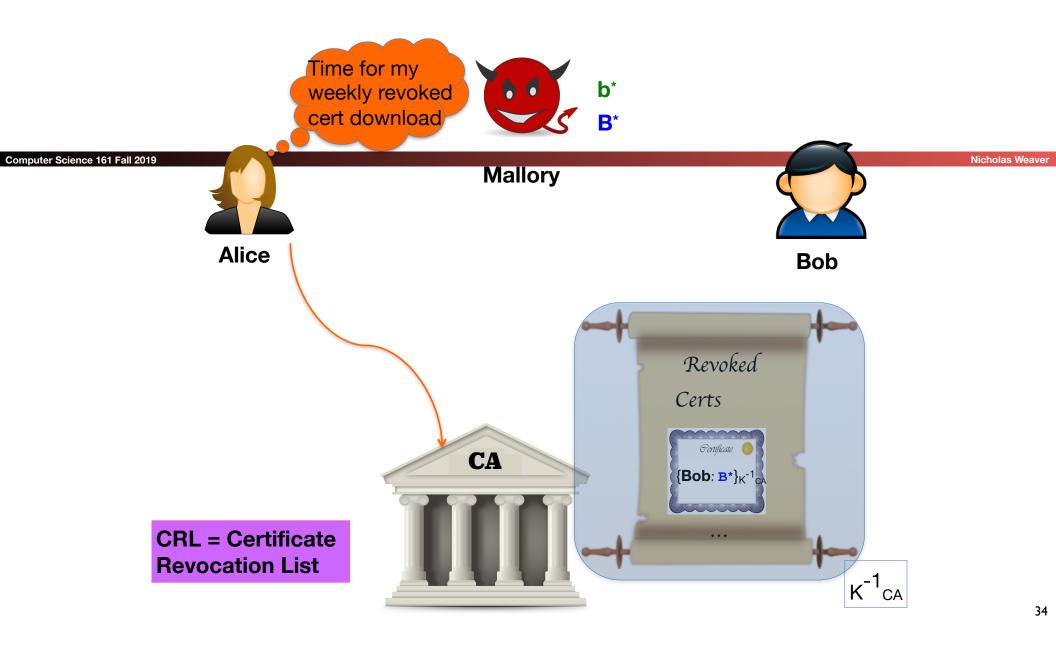

- What do we do if a CA screws up and issues a cert in Bob's name to Mallory?
 - E.g. Verisign issued a *Microsoft.com* cert to a *Random Joe*
 - (Related problem: Bob realizes b has been stolen)
- How do we recover from the error?
- Approach #1: expiration dates
 - Mitigates possible damage
 - But adds management burden
 - Benign failures to renew will break normal operation



Revocation, con't

Computer Science 161 Fall 2019

- Approach #2: announce revoked certs
 - Users periodically download cert revocation list (CRL)



Revocation, con't

Computer Science 161 Fall 2019

- Approach #2: announce revoked certs
 - Users periodically download cert revocation list (CRL)
- Issues?
 - Lists can get large
 - Need to authenticate the list itself how?

Revocation, con't

Computer Science 161 Fall 2019

- Approach #2: announce revoked certs
- Users periodically download cert revocation list (CRL)
- Issues?
 - Lists can get large
 - Need to authenticate the list itself how? Sign it!
 - Mallory can exploit download lag
 - What does Alice do if can't reach CA for download?
 - Assume all certs are invalid (fail-safe defaults)
 - Wow, what an unhappy failure mode!
 - Use old list: widens exploitation window if Mallory can "DoS" CA (DoS = denial-of-service)

The (Failed) Alternative: The "Web Of Trust"

Computer Science 161 Fall 2019

- Alice signs Bob's Key
 - Bob Sign's Carol's
- So now if Dave has Alice's key, Dave can believe Bob's key and Carol's key...
 - Eventually you get a graph/web of trust...
- PGP started out with this model
 - You would even have PGP key signing parties
 - But it proved to be a disaster: Trusting central authorities can make these problems so much simpler!

The Facebook Problem: Applied Cryptography in Action

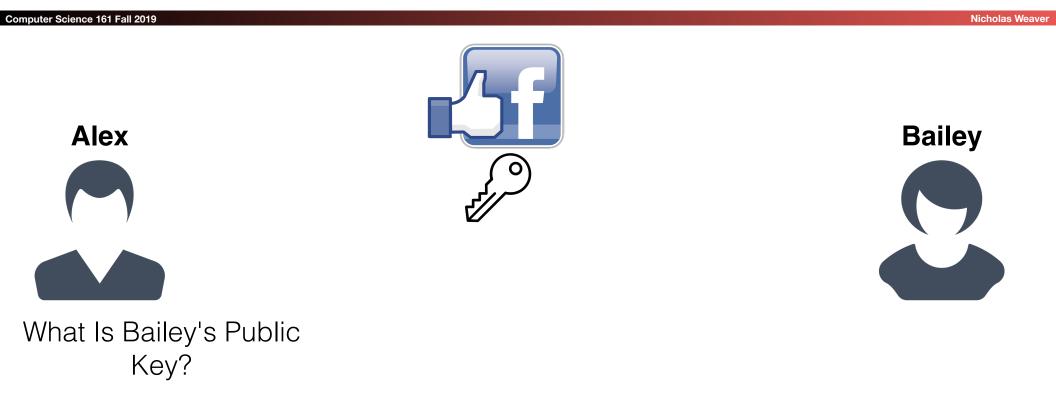
Computer Science 161 Fall 2019

- Facebook Messenger now has an encrypted chat option
 - Limited to their phone application
- The cryptography in general is very good
- Used a well regarded asynchronous messenger library (from Signal) with many good properties, including forward secrecy
- When Alice wants to send a message to Bob
 - Queries for Bob's public key from Facebook's server
 - Encrypts message and send it to Facebook
 - Facebook then forwards the message to Bob
- Both Alice and Bob are using encrypted and authenticated channels to Facebook

Facebook's Unique Messenger Problem: Abuse

Computer Science 161 Fall 2019

- Much of Facebook's biggest problem is dealing with abuse...
 - What if either Alice or Bob is a stalker, an a-hole, or otherwise problematic?
 - Aside: A huge amount of abuse is explicitly gender based, so I'm going to use "Alex" as the abuser and "Bailey" as the victim through the rest of this example


Facebook would expect the other side to complain

- And then perhaps Facebook would kick off the perpetrator for violating Facebook's Terms of Service
- But fake abuse complaints are also a problem
 - So can't just take them on face value
- And abusers might also want to release info publicly
 - Want sender to be able to *deny to the public* but not to Facebook

Facebook's Problem Quantified

- Unless Bailey forwards the unencrypted message to Facebook
 - Facebook *must not* be able to see the contents of the message
- If Bailey does forward the unencrypted message to Facebook
 - Facebook *must ensure* that the message is what Alex sent to Bailey
- Nobody *but* Facebook should be able to verify this: No public signatures!
 - Critical to prevent abusive release of messages to the public being verifiable

The Protocol In Action

Aside: Key Transparency...

- Both Alex and Bailey are trusting Facebook's honesty...
 - What if Facebook gave Alex a different key for Bailey? How would he know?
- Facebook messenger has a *nearly* hidden option which allows Alex to see Bailey's key
 - If they ever get together, they can manually verify that Facebook was honest
- The mantra of central key servers: *Trust but Verify*
 - The simple option is enough to force honesty, as each attempt to lie has some probability of being caught
- This is the biggest weakness of Apple iMessage:
 - iMessage has (fairly) good cryptography but there is no way to verify Apple's honesty

The Protocol In Action

to=Bailey}

```
Computer Science 161 Fall 2019
                                                                                                               Nicholas Weaver
       Alex
                                                                                                       Bailey
                                         {message=E(K<sub>pub b</sub>,
                                           M={"Hey Bailey, my zipper has
                                               a problem, see photo",
                                               krand}),
                                          mac=HMAC(krand, M),
                                          to=Bailey,
                                          from=Alex,
  {message=E(K_{pub_b},
                                          time=now,
    M={"Hey Bailey, my zipper has
                                          fbmac=HMAC(K<sub>fb</sub>, {mac, from,
        a problem, see photo",
                                                              to, time})
        k_{rand} }),
   mac=HMAC(k_{rand}, M),
```

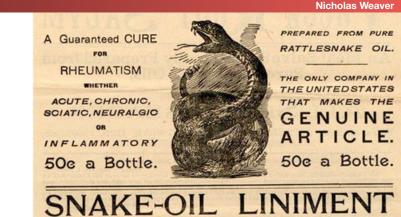
Some Notes

- Facebook can not read the message or even verify Alex's HMAC
 - As the key for the HMAC is in the message itself
- Only Facebook knows their HMAC key
 - And its the only information Facebook *needs* to retain in this protocol: Everything else can be discarded
- Bailey upon receipt checks that Alex's HMAC is correct
 - Otherwise Bailey's messenger silently rejects the message
 - Forces Alex's messenger to be honest about the HMAC, even thought Facebook never verified it
- Bailey trusts Facebook when Facebook says the message is from Alex
 - Bailey does *not verify* a signature, because there is no signature to verify... But the Signal protocol uses an ephemeral key agreement so that implicitly verifies Alex as well

Now To Report Abuse

Computer Science 161 Fall 2019

Alex


```
Bailey
{Abuse{
    M={"Hey Bailey, my zipper ha
        a problem, see photo",
        krand}},
    mac=HMAC(krand, M),
    to=Bailey,
    from=Alex,
    time=now,
    fbmac=HMAC(Kfb, {mac, from,
        to, time}))<sup>44</sup>
```

Facebook's Verification

- First verify that Bailey correctly reported the message sent
 - Verify fbmac=HMAC(K_{fb}, {mac, from, to, time})
 - Only Facebook can do this verification since they keep K_{fb} secret
 - This enables Facebook to confirm that this is the message that it relayed from Alex to Bailey
- Then verify that Bailey didn't tamper with the message
 - Verify mac=HMAC(k_{rand}, {M, k_{rand}})
- Now Facebook knows this was sent from Alex to Bailey and can act accordingly
 - But Bailey can't prove that Alex sent this message to anyone other than Facebook
 - And Bailey can't tamper with the message because the HMAC is also a hash

Snake Oil Cryptography: Craptography

- "Snake Oil" refers to 19th century fraudulent "cures"
 - Promises to cure practically every ailment
 - Sold because there was no regulation and no way for the buyers to know

- The security field is practically *full* of Snake Oil Security and Snake Oil Cryptography
 - <u>https://www.schneier.com/crypto-gram/archives/1999/0215.html#snakeoil</u>

Anti-Snake Oil: NSA's CNSA cryptographic suite

- Successor to "Suite B"
 - Unclassified algorithms approved for Top Secret:
 - There is nothing higher than TS, you have "compartments" but those are access control modifiers
 - https://www.iad.gov/iad/programs/iad-initiatives/cnsa-suite.cfm
 - Symmetric key, AES: 256b keys
 - Hashing, SHA-384
 - RSA/Diffie Helman: >= 3072b keys
 - ECDHE/ECDSA: 384b keys over curve P-384
- In an ideal world, I'd only use those parameters,
 - But a lot of "strong" commercial is 128b AES, SHA-256, 2048b RSA/DH, 256b elliptic curves, plus the DJB curves and cyphers (ChaCha20)
 - NSA has a requirement where a Top Secret communication captured today should not be decryptable by an adversary 40 years from now!

Snake Oil Warning Signs...

Computer Science 161 Fall 2019

- Amazingly long key lengths
 - The NSA is super paranoid, and even they don't use >256b keys for symmetric key or >4096b for RSA/DH public key
 - So if a system claims super long keys, be suspicious
- New algorithms and crazy protocols
 - There is *no reason* to use a novel block cipher, hash, public key algorithm, or protocol
 - Even a "post quantum" public key algorithm should not be used alone: Combine it with a conventional public key algorithm
 - Anyone who roles their own is asking for trouble!
 - EG, Telegram
 - "It's like someone who had never seen cake but heard it described tried to bake one.
 With thumbtacks and iron filings." Matthew D Green
 - "Exactly! GLaDOS-cake encryption.
 Odd ingredients; strange recipe; probably not tasty; may explode oven. :)" Alyssa Rowan

Lots in the Cryptocurrency Space...

- The biggest being IOTA (aka IdiOTA), a "internet of Things" cryptocurrency...
 - That doesn't use public key signatures, instead a hash based scheme that means you can *never* reuse a key...
 - And results in 10kB+ signatures! (Compared with RSA which is <450B, and those are big)
 - That has created their own hash function...
 - That was quickly broken!
 - That is supposed to end up distributed...
 - But relies entirely on their central authority
 - That uses trinary math!?!
 - Somehow claiming it is going to be better, but you need entirely new processors...

Snake Oil Warning Signs...

Computer Science 161 Fall 2019

- "One Time Pads"
 - One time pads are secure, if you actually have a true one time pad
 - But almost all the snake oil advertising it as a "one time pad" isn't!
 - Instead, they are invariably some wacky stream cypher
- Gobbledygook, new math, and "chaos"
 - Kinda obvious, but such things are never a good sign
- Rigged "cracking contests"
 - Usually "decrypt this message" with no context and no structure
 - Almost invariably a single or a few unknown plaintexts with nothing else
 - Again, Telegram, I'm looking at you here!

Unusability: No Public Keys

Computer Science 161 Fall 2019

- The APCO Project 25 radio protocol
 - Supports encryption on each traffic group
 - But each traffic group uses a single *shared* key
- All fine and good if you set everything up at once...
 - You just load the same key into all the radios
 - But this totally fails in practice: what happens when you need to coordinate with s who doesn't have the same keys?
- Made worse by bad user interface and users who think rekeying frequently is a good idea
 - If your crypto is good, you shouldn't need to change your crypto keys
- Why (Special Agent) Johnny (Still) Can't Encrypt
- http://www.crypto.com/blog/p25

Unusability: PGP

- I hate Pretty Good Privacy
 - But not because of the cryptography...
- The PGP cryptography is decent...
 - Except it lacks "Forward Secrecy": If I can get someone's private key I can decrypt all their old messages
- The metadata is awful...
 - By default, PGP says who every message is from and to
 - It makes it much faster to decrypt
 - It is hard to hide metadata well, but its easy to do things better than what PGP does
- It is never transparent
 - Even with a "good" client like GPG-tools on the Mac
 - And I don't have a client on my cellphone

Unusability: How do you find someone's PGP key?

Computer Science 161 Fall 2019

- Go to their personal website?
- Check their personal email?
- Ask them to mail it to you
 - In an unencrypted channel?
- Check on the MIT keyserver?
- And get the old key that was mistakenly uploaded and can never be removed? Search results for 'nweaver icsi edu berkeley'

Туре	bits/keyID	Date	User ID			
pub	4096R/ <u>8A46A420</u>	2013-06-20	Nicholas	Weaver	< <u>nweaver@icsi.berkeley.edu></u> <n_weaver@mac.com> <nweaver@gmail.com></nweaver@gmail.com></n_weaver@mac.com>	

pub 2048R/442CF948 2013-06-20 Nicholas Weaver <nweaver@icsi.berkeley.edu>

Unusability: openssl libcrypto and libssl

Computer Science 161 Fall 2019

- OpenSSL is a nightmare...
- A gazillion different little functions needed to do anything
- So much of a nightmare that I'm not going to bother learning it to teach you how bad it is
 - This is why last semester's python-based project didn't give this raw
- But just to give you an idea: The command line OpenSSL utility options:

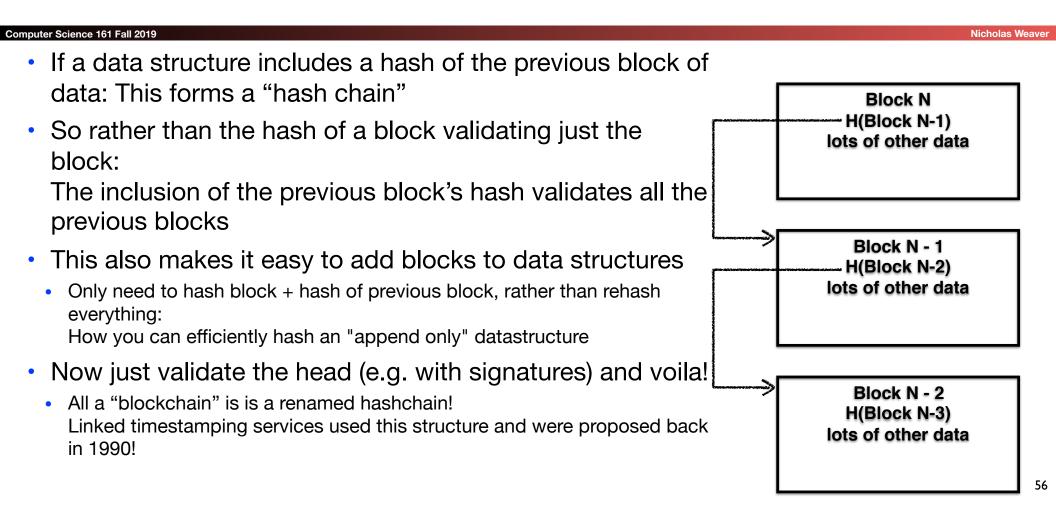
OpenSSL> help openssl:Error: 'help' is an invalid command.

Standard commands			
asn1parse	ca	ciphers	CMS
crl	cr12pkcs7	dgst	dh
dhparam	dsa	dsaparam	ec
ecparam	enc	engine	errstr
gendh	gendsa	genpkey	genrsa
nseq	ocsp	passwd	pkcs12
pkcs7	pkcs8	pkey	pkeyparam
pkeyutl	prime	rand	req
rsa	rsautl	s_client	s_server
s_time	sess_id	smime	speed
spkac	srp	ts	verify
version	x509		

Message Digest commands (see the `dgst' command for more details) md4 md5 mdc2 rmd160 sha sha1

Cipher commands (see the `enc' command for more details)

And On To Linked Lists Blockchains And CryptoCurrencies


Computer Science 161 Fall 2019

- "Blockchain Technology"
 - A fancy word for "Append-Only Data Structure"
 - That causes people's eyes to glaze over and them to throw money at people
 - "Private/Permissioned Blockchain":
 - A setup where only one or a limited number of systems are authorized to append to the log
 - AKA 20 year old, well known techniques
 - "Public/Permissionless Blockchain":
 - Anybody can participate as appenders so there is supposedly no central authority: Difficulty comes in removing "sibyls"

Cryptocurrencies

Things that don't actually work as currencies...
 More on Monday (which will be a 'fun' lecture and not covering stuff on the midterm, but will cover all the problems with public blockchains & cryptocurrencies)

Hash Chains

Merkle Trees

Computer Science 161 Fall 2019

- Lets say you have a lot of elements •
 - And you want to add or modify elements
- And you want to make the hash of the set easy to update
- Enter hash trees/merkle trees
 - Elements 0, 1, 2, 3, 4, 5... •
 - H(0), H(1), H(2)...
 - H(H(0) + H(1)), H(H(2) + H(3))...•
 - The final hash is the root of the top of the tree.
- And so on until you get to the root
 - Allows you to add an element and update lg(n) hashes • Rather than having to rehash all the data
 - Patented in 1979!! •

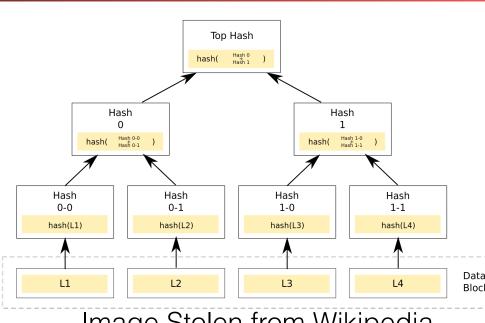


Image Stolen from Wikipedia

A Trivial Private Blockchain...

Computer Science 161 Fall 2019

- We have a single server s, with keys K_{pub} and K_{priv} ...
 - And a git archive *g*...
- Whenever we issue a pull request...
 - The server validates that the pull request meets the allowed criteria
 - Accepts the pull request
 - Signs the head...
- And that is it!
 - Git is an append only data structure, and by signing the new head, we have the server authenticating the *entire archive!*
- This is why "private" blockchain is not a revolution!!!
 - Anything that would benefit from an append-only, limited writer database already has one!