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Web Security 2: 
Origins and 
Cookies...

1



Computer Science 161 Fall 2019 Weaver

Desirable security goals

• Integrity: malicious web sites should not be able to tamper 
with integrity of our computers or our information on other web 
sites


• Confidentiality: malicious web sites should not be able to learn 
confidential information from our computers or other web sites


• Privacy: malicious web sites should not be able to spy on us or 
our online activities


• Availability: malicious parties should not be able to keep us 
from accessing our web resources
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Security on the web

• Risk #1: we don’t want a malicious site to be able to trash 
files/programs on our computers

• Browsing to awesomevids.com (or evil.com) should not infect our 

computers with malware, read or write files on our computers, etc...

• We generally assume an adversary can cause our browser to go to a web page 

of the attacker's choosing


• Mitigation strategy

• Javascript is sandboxed: it is not allowed to access files etc...

• Browser code tries to avoid bugs:

• Privilege separation, automatic updates

• Reworking into safe languages (rust)
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Security on the web

• Risk #2: we don’t want a malicious site to be able to spy on 
or tamper with our information or interactions with other 
websites


• Browsing to evil.com should not let evil.com spy on our emails in Gmail 
or buy stuff with our Amazon accounts


• Defense: Same Origin Policy

• An after the fact isolation mechanism enforced by the web browser
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Security on the web

• Risk #3: we want data stored on a web server to be 
protected from unauthorized access


• Defense: server-side security
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Major Property: 
"Same Origin Policy"
• Basic idea:

• A web page runs from an 'origin': A remote domain/protocol/port tuple.


• Within that origin, the web page runs code in the browser

• But is only supposed to affect things within the same origin


• The web browser must enforce this isolation

• Otherwise, a malicious web site can cause behaviors on other web sites


• Matching is exact

• http://www.example.com, 

https://www.example.com,  
http://example.com are all different origins
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Same Origin Controls 
What A Page Can Do...
• Can fetch images and content regardless of origin

• But can not determine detailed properties: 

Images are blank squares when loaded cross-origin

• Remote scripts run within the origin of the page, not the origin where they are fetched 

from


• Can create frames

• Each frame can be in its own origin...

• Can only communicate with frames from the same origin or with origin crossing options


• Can only do certain calls (e.g. xml-http-request) to the origin

• Summary here: 

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
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Can change origin up...

• www.example.com can change its origin to be 
example.com


• But once it does so, it is no longer in the origin of www.example.com


• But can't change origin down
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But Cookies Are Different

• Reminder:  Cookies can be set by a remote website

• With the set-cookie: header


• And can also be set by JavaScript

• Common usage: user authentication

• EG, set a "magic value" to identify the user

• The server can then check that value on subsequent fetches


• If someone or another web-site can get this cookie...

• They can impersonate that user

• Attacker goal is to often get cookies of other web-sites
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Cookie Origin Rules != JavaScript Same Origin

• Cookies are generally described as key/value pairs

• username=nick 
• authcookie=nSFCOAusrr97097y03 

• Cookies are set with an associated hostname/path binding

• EG, example.com/foo


• It will be sent to all websites who's suffix fully matches:

• www.example.com/foo will get it

• example.com/bar won't get it


• Further complicating things:

• Although set using name/domain/path/value...

• They are read (in unspecified order) as just name/value

• There is no way to know if you have two copies of the username cookie which one is legit!

• Leads to fun "Cookie stuffing" attacks


• https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
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Secure and http-only

• Cookies, by default, will be sent over both http and https

• Designed so you can have a "secure" login page but "insecure" main pages...

• From back when the security of HTTPS was considered "expensive"

• Which means that anyone listening in can capture the cookies

• "Firesheep": A browser plug-in designed to make it easy to steal login cookies


• "Fix": the "secure" flag

• Cookie will only be sent over encrypted connections

• But you could set it with an insecure connection (now fixed)


• http-only: Only set in the cookie header

• Not accessible to JavaScript:  Designed to protect (a bit) from rogue scripts
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Example of Cookie Failures: 
Spectre...
• It used to be Chrome isolated different tabs in 

different Unix processes

• Both for security sandboxing and so if a tab crashed, the browser wouldn't


• Spectre: A hardware sidechannel attack

• Observation: There are many cases where a program may want to keep data 

safe from other parts of the same program...


• The big one in this case is JavaScript

• If you have multiple origins running in the same tab... 

and one script could read another origin's cookies...

• It is game over
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Real World Spectre: 
How It Works
• evil.com gets the user to visit its web page

• Starts running in a browser tab


• evil.com then opens a frame to victim.com

• Now under the isolation rules: 

JavaScript in evil.com must not be able to read any memory from 
victim.com... 
In particular the cookies


• But they are running in the same operating system process

• So the only memory protection is enforced by the JavaScript JIT


• Goal: break the isolation, read memory from victim...
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Modern Processors: 
Insanely Complex Beasts...
• In order to get good IPC (Instructions per cycle), modern 

processors are insanely aggressive

• Branch prediction: guess which way a program is going to go and do it

• Aggressive caches: cache everything possible

• Speculative execution: uh, think I'm going to need this, do it anyway


• Spectre's key idea

• We can detect the results of failed speculative execution: 

A side-channel attack such as timing, cache state, etc...

• Allows us to see what the input to the speculative execution was

• We can force speculative execution by making the processor guess wrong



Computer Science 161 Fall 2019 Weaver

So Spectre-JS

• evil.com loads victim.com in a frame

• And evil.com javascript then executes this loop

• for (lots) do {...} 

• All executions are allowed

• Don't want to get terminated


• But this also trains the branch predictor

• So the processor will attempt to run the loop one more time

• This last time does computation on memory evil.com is not supposed to see

• EG victim.com's cookies


• Then checks how long it took which tells some bits about what was being read

• Lather, rinse, repeat
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Countering Spectre: 
EAT RAM! NOM NOM NOM
• Chrome now runs every origin as its own process: "Site Isolation"

• Coming soon to Firefox

• Which means process level isolation from the operating system


• Defeats spectre-type attacks

• Now you can't even attempt to speculate across processes... 

since they have different page-tables they would load different data

• If you could read across this barrier you've broken OS level isolation


• No such thing as a "Lightweight" isolation barrier


• But OS processes are expensive

• Lots of memory overhead

• Context-switching between processes is expensive: 

wipes out most processor state
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Cookies & Web Authentication

• One very widespread use of cookies is for web sites to track users 
who have authenticated


• E.g., once browser fetched  
http://mybank.com/login.html?user=alice&pass=bigsecret 
with a correct password, server associates value of “session” cookie 
with logged-in user’s info

• An “authenticator”


• Now server subsequently can tell: “I’m talking to same browser that 
authenticated as Alice earlier”

• An attacker who can get a copy of Alice’s cookie can access the server impersonating 

Alice!  Cookie thief!
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Cross-Site Request Forgery (CSRF)  
(aka XSRF)
• A way of taking advantage of a web server’s cookie-based 

authentication to do an action as the user

• Remember, an origin is allowed to fetch things from other origins

• Just with very limited information about what is done…

• E.g. have some javascript add an IMG to the DOM that is: 

https://www.exifltratedataplease.com/?{datatoexfiltrate} 
that returns a 1x1 transparent GIF


• Basically a nearly unlimited bandwidth channel for exfiltrating data to something 
outside the current origin


• Google Analytics uses this method to record information about visitors to any site 
using
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Static Web Content

<HTML> 
  <HEAD> 
    <TITLE>Test Page</TITLE> 
  </HEAD> 
  <BODY> 
    <H1>Test Page</H1> 
    <P> This is a test!</P> 

  </BODY> 
</HTML>

Visiting this boring web page will just 
display a bit of content.
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Automatic Web Accesses

<HTML> 
  <HEAD> 
    <TITLE>Test Page</TITLE> 
  </HEAD> 
  <BODY> 
    <H1>Test Page</H1> 
    <P> This is a test!</P> 
    <IMG SRC="http://anywhere.com/logo.jpg"> 
  </BODY> 
</HTML>

Visiting this page will cause our browser 
to automatically fetch the given URL.
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Automatic Web Accesses

<HTML> 
  <HEAD> 
    <TITLE>Evil!</TITLE> 
  </HEAD> 
  <BODY> 
    <H1>Test Page</H1>  <!-- haha! --> 
    <P> This is a test!</P> 
    <IMG SRC="http://xyz.com/do=thing.php..."> 
  </BODY> 
</HTML>

So if we visit a page under an attacker’s 
control, they can have us visit other URLs
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Automatic Web Accesses

<HTML> 
  <HEAD> 
    <TITLE>Test Page</TITLE> 
  </HEAD> 
  <BODY> 
    <H1>Test Page</H1>  <!-- haha! --> 
    <P> This is a test!</P> 
    <IMG SRC="http://xyz.com/do=thing.php..."> 
  </BODY> 
</HTML>

When doing so, our browser will happily send 
along cookies associated with the visited URL! 
(any xyz.com cookies in this example)  😟
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Automatic Web Accesses

<HTML> 
  <HEAD> 
    <TITLE>Evil!</TITLE> 
  </HEAD> 
  <BODY> 
    <H1>Test Page</H1>  <!-- haha! --> 
    <P> This is a test!</P> 
    <IMG SRC="http://xyz.com/do=thing.php..."> 
  </BODY> 
</HTML> (Note, Javascript provides many other ways 

for a page returned by an attacker to force 
our browser to load a particular URL)
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Web Accesses w/ Side Effects

• Recall our earlier banking URL:

• http://mybank.com/moneyxfer.cgi?account=alice&amt=50&to=bob 

• So what happens if we visit evilsite.com, which includes:

• <img width=“1" height="1" src="http://mybank.com/

moneyxfer.cgi?Account=alice&amt=500000&to=DrEvil"> 

• Our browser issues the request …  To get what will render as a 1x1 pixel 
block


• … and dutifully includes authentication cookie! 😟


• Cross-Site Request Forgery (CSRF) attack

• Web server happily accepts the cookie
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CSRF Scenario

Attack Server attacker.com

Server Victim mybank.com 

User Victim

establish session

send forged request

visit server malicious page 
containing URL to 
mybank.com with bad 

actions

1

2

3

4 (w/ cookie)

cookie for 
mybank.com

Bank acts on request, 
since it has valid 
cookie for user

5
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GET /do_squig?redirect=%2Fuserpage%3Fuser%3Ddilbert 
    &squig=squigs+speak+a+deep+truth 
COOKIE: "session_id=5321506"

Web action with predictable structure

URL fetch for posting a squig

Authenticated with cookie that 
browser automatically sends along
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CSRF and the Internet of Shit...

• Stupid IoT device has a default password

• http://10.0.1.1/login?user=admin&password=admin 

• Sets the session cookie for future requests to authenticate the user


• Stupid IoT device also has remote commands

• http://10.0.1.1/set-dns-server?server=8.8.8.8 

• Changes state in a way beneficial to the attacks


• Stupid IoT device doesn't implement CSRF defenses...

• Attackers can do mass malvertized drive-by attacks: 

Publish a JavaScript advertisement that does these two requests
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CSRF and Malvertizing…

• You have some evil JavaScript:

• http://www.eviljavascript.com/pwnitall.js 

• This JavaScript does the following:

• Opens a 1x1 frame pointing to 

http://www.eviljavascript.com/frame


• The frame then…

• Opens a gazillion different internal frames all to launch candidate xsrf attacks!


• Then get it to run by just paying for it!

• Or hacking sites to include <script src="http://...">
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An attacker could  
• add videos to a user’s "Favorites,"  
• add himself to a user’s "Friend" or "Family" list,  
• send arbitrary messages on the user’s behalf,  
• flagged videos as inappropriate,  
• automatically shared a video with a user’s contacts, 

subscribed a user to a "channel" (a set of videos 
published by one person or group), and  

• added videos to a user’s "QuickList" (a list of videos 
a user intends to watch at a later point). 

2008 CSRF attack
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Likewise Facebook
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CSRF Defenses

•  Referer (sic) Validation 
 
 

•  Secret Validation Token 
 
 

•  Note: only server can implement these

<input type=hidden value=23a3af01b>

Referer: http://www.facebook.com/
home.php
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CRSF protection: Referer Validation

• When browser issues HTTP request, it includes a Referer 
[sic] header that indicates which URL initiated the request


• This holds for any request, not just particular transactions

• And yes, it is a 30 year old spelling error we can't get rid of!


• Web server can use information in Referer header to 
distinguish between same-site requests versus cross-site 
requests


• Only allow same-site requests
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GET /moneyxfer.cgi?account=alice&amt=50&to=bob HTTP/1.1 
Accept: image/gif, image/x-bitmap, image/jpeg, */* 
Accept-Language: en 
Connection: Keep-Alive 
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95) 
Host: mybank.com 
Cookie: session=44ebc991 
Referer: http://mybank.com/login.html?user=alice&pass...  

HTTP Request

Method Resource HTTP version

Headers

Data  (if POST; none for GET)

Blank line
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Example of Referer Validation
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Referer Validation Defense

• HTTP Referer header

• Referer: https://www.facebook.com/login.php

• Referer: http://www.anywhereelse.com/… 

• Referer: (none)

• Strict policy disallows (secure, less usable)

• “Default deny”


• Lenient policy allows (less secure, more usable)

• “Default allow”

✓
✗

?
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Referer Sensitivity Issues

• Referer may leak privacy-sensitive information

• http://intranet.corp.apple.com/projects/iphone/competitors.html 

• Common sources of blocking:

• Network stripping by the organization

• Network stripping by local machine

• Stripped by browser for HTTPS → HTTP transitions

• User preference in browser

Hence, such blocking might help 
attackers in the lenient policy 

case
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Secret Token Validation

• goodsite.com server includes a secret token into the 
webpage (e.g., in forms as an additional field)

• This needs to be effectively random: The attacker can't know this


• Legit requests to goodsite.com send back the secret

• So the server knows it was from a page on goodsite.com


• goodsite.com server checks that token in request 
matches is the expected one; reject request if not 


• Key property: 
This secret must not be accessible cross-origin
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Storing session tokens:   
Lots of options (but none are perfect)
• Short Lived Browser cookie: 
Set-Cookie: SessionToken=fduhye63sfdb

• But well, CSRF can still work, just only for a limited time


• Embedd in all URL links: 
https://site.com/checkout?SessionToken=kh7y3b

• ICK, ugly…  Oh, and the referer: field leaks this!


• In a hidden form field:  
<input type=“hidden” name=“sessionid” value=“kh7y3b”>

• ICK, ugly… And can only be used to go between pages in short lived sessions


• Fundamental problem: Web security is grafted on
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Latest Defense: 
‘SameSite’ Cookies
• An additional flag on 

cookies

• Tells the browser to not send the 

cookie if the referring page is not 
the cookie origin


• Problem is adoption:   
Not all browsers support 
it!

• But 88% may be "good enuf" 

depending on application

• Could possibly ban non-

implementing browsers
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CSRF: Summary

• Target: user who has some sort of account on a vulnerable server where 
requests from the user’s browser to the server have a predictable structure


• Attacker goal: make requests to the server via the user’s browser that look to 
server like user intended to make them


• Attacker tools: ability to get user to visit a web page under the attacker’s control

• Key tricks: 

• (1) requests to web server have predictable structure; 

• (2) use of <IMG SRC=…> or such to force victim’s browser to issue such a (predictable) request


• Notes: (1) do not confuse with Cross-Site Scripting (XSS); 
(2) attack only requires HTML, no need for Javascript


• Defenses are server side


