
Computer Science 161 Fall 2019 Weaver

Web Security 2: 
Origins and
Cookies...

1

Computer Science 161 Fall 2019 Weaver

Desirable security goals

• Integrity: malicious web sites should not be able to tamper
with integrity of our computers or our information on other web
sites

• Confidentiality: malicious web sites should not be able to learn
confidential information from our computers or other web sites

• Privacy: malicious web sites should not be able to spy on us or
our online activities

• Availability: malicious parties should not be able to keep us
from accessing our web resources

Computer Science 161 Fall 2019 Weaver

Security on the web

• Risk #1: we don’t want a malicious site to be able to trash
files/programs on our computers

• Browsing to awesomevids.com (or evil.com) should not infect our

computers with malware, read or write files on our computers, etc...

• We generally assume an adversary can cause our browser to go to a web page

of the attacker's choosing

• Mitigation strategy

• Javascript is sandboxed: it is not allowed to access files etc...

• Browser code tries to avoid bugs:

• Privilege separation, automatic updates

• Reworking into safe languages (rust)

Computer Science 161 Fall 2019 Weaver

Security on the web

• Risk #2: we don’t want a malicious site to be able to spy on
or tamper with our information or interactions with other
websites

• Browsing to evil.com should not let evil.com spy on our emails in Gmail
or buy stuff with our Amazon accounts

• Defense: Same Origin Policy

• An after the fact isolation mechanism enforced by the web browser

Computer Science 161 Fall 2019 Weaver

Security on the web

• Risk #3: we want data stored on a web server to be
protected from unauthorized access

• Defense: server-side security

Computer Science 161 Fall 2019 Weaver

Major Property: 
"Same Origin Policy"
• Basic idea:

• A web page runs from an 'origin': A remote domain/protocol/port tuple.

• Within that origin, the web page runs code in the browser

• But is only supposed to affect things within the same origin

• The web browser must enforce this isolation

• Otherwise, a malicious web site can cause behaviors on other web sites

• Matching is exact

• http://www.example.com, 

https://www.example.com,  
http://example.com are all different origins

Computer Science 161 Fall 2019 Weaver

Same Origin Controls 
What A Page Can Do...
• Can fetch images and content regardless of origin

• But can not determine detailed properties: 

Images are blank squares when loaded cross-origin

• Remote scripts run within the origin of the page, not the origin where they are fetched

from

• Can create frames

• Each frame can be in its own origin...

• Can only communicate with frames from the same origin or with origin crossing options

• Can only do certain calls (e.g. xml-http-request) to the origin

• Summary here: 

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

Computer Science 161 Fall 2019 Weaver

Can change origin up...

• www.example.com can change its origin to be
example.com

• But once it does so, it is no longer in the origin of www.example.com

• But can't change origin down

Computer Science 161 Fall 2019 Weaver

But Cookies Are Different

• Reminder: Cookies can be set by a remote website

• With the set-cookie: header

• And can also be set by JavaScript

• Common usage: user authentication

• EG, set a "magic value" to identify the user

• The server can then check that value on subsequent fetches

• If someone or another web-site can get this cookie...

• They can impersonate that user

• Attacker goal is to often get cookies of other web-sites

Computer Science 161 Fall 2019 Weaver

Cookie Origin Rules != JavaScript Same Origin

• Cookies are generally described as key/value pairs

• username=nick
• authcookie=nSFCOAusrr97097y03

• Cookies are set with an associated hostname/path binding

• EG, example.com/foo

• It will be sent to all websites who's suffix fully matches:

• www.example.com/foo will get it

• example.com/bar won't get it

• Further complicating things:

• Although set using name/domain/path/value...

• They are read (in unspecified order) as just name/value

• There is no way to know if you have two copies of the username cookie which one is legit!

• Leads to fun "Cookie stuffing" attacks

• https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies

Computer Science 161 Fall 2019 Weaver

Secure and http-only

• Cookies, by default, will be sent over both http and https

• Designed so you can have a "secure" login page but "insecure" main pages...

• From back when the security of HTTPS was considered "expensive"

• Which means that anyone listening in can capture the cookies

• "Firesheep": A browser plug-in designed to make it easy to steal login cookies

• "Fix": the "secure" flag

• Cookie will only be sent over encrypted connections

• But you could set it with an insecure connection (now fixed)

• http-only: Only set in the cookie header

• Not accessible to JavaScript: Designed to protect (a bit) from rogue scripts

Computer Science 161 Fall 2019 Weaver

Example of Cookie Failures: 
Spectre...
• It used to be Chrome isolated different tabs in 

different Unix processes

• Both for security sandboxing and so if a tab crashed, the browser wouldn't

• Spectre: A hardware sidechannel attack

• Observation: There are many cases where a program may want to keep data

safe from other parts of the same program...

• The big one in this case is JavaScript

• If you have multiple origins running in the same tab... 

and one script could read another origin's cookies...

• It is game over

Computer Science 161 Fall 2019 Weaver

Real World Spectre: 
How It Works
• evil.com gets the user to visit its web page

• Starts running in a browser tab

• evil.com then opens a frame to victim.com

• Now under the isolation rules: 

JavaScript in evil.com must not be able to read any memory from
victim.com... 
In particular the cookies

• But they are running in the same operating system process

• So the only memory protection is enforced by the JavaScript JIT

• Goal: break the isolation, read memory from victim...

Computer Science 161 Fall 2019 Weaver

Modern Processors: 
Insanely Complex Beasts...
• In order to get good IPC (Instructions per cycle), modern

processors are insanely aggressive

• Branch prediction: guess which way a program is going to go and do it

• Aggressive caches: cache everything possible

• Speculative execution: uh, think I'm going to need this, do it anyway

• Spectre's key idea

• We can detect the results of failed speculative execution: 

A side-channel attack such as timing, cache state, etc...

• Allows us to see what the input to the speculative execution was

• We can force speculative execution by making the processor guess wrong

Computer Science 161 Fall 2019 Weaver

So Spectre-JS

• evil.com loads victim.com in a frame

• And evil.com javascript then executes this loop

• for (lots) do {...}

• All executions are allowed

• Don't want to get terminated

• But this also trains the branch predictor

• So the processor will attempt to run the loop one more time

• This last time does computation on memory evil.com is not supposed to see

• EG victim.com's cookies

• Then checks how long it took which tells some bits about what was being read

• Lather, rinse, repeat

Computer Science 161 Fall 2019 Weaver

Countering Spectre: 
EAT RAM! NOM NOM NOM
• Chrome now runs every origin as its own process: "Site Isolation"

• Coming soon to Firefox

• Which means process level isolation from the operating system

• Defeats spectre-type attacks

• Now you can't even attempt to speculate across processes... 

since they have different page-tables they would load different data

• If you could read across this barrier you've broken OS level isolation

• No such thing as a "Lightweight" isolation barrier

• But OS processes are expensive

• Lots of memory overhead

• Context-switching between processes is expensive: 

wipes out most processor state

Computer Science 161 Fall 2019 Weaver

Cookies & Web Authentication

• One very widespread use of cookies is for web sites to track users
who have authenticated

• E.g., once browser fetched  
http://mybank.com/login.html?user=alice&pass=bigsecret 
with a correct password, server associates value of “session” cookie
with logged-in user’s info

• An “authenticator”

• Now server subsequently can tell: “I’m talking to same browser that
authenticated as Alice earlier”

• An attacker who can get a copy of Alice’s cookie can access the server impersonating

Alice! Cookie thief!

Computer Science 161 Fall 2019 Weaver

Cross-Site Request Forgery (CSRF)  
(aka XSRF)
• A way of taking advantage of a web server’s cookie-based

authentication to do an action as the user

• Remember, an origin is allowed to fetch things from other origins

• Just with very limited information about what is done…

• E.g. have some javascript add an IMG to the DOM that is: 

https://www.exifltratedataplease.com/?{datatoexfiltrate}
that returns a 1x1 transparent GIF

• Basically a nearly unlimited bandwidth channel for exfiltrating data to something
outside the current origin

• Google Analytics uses this method to record information about visitors to any site
using

Computer Science 161 Fall 2019 Weaver

Computer Science 161 Fall 2019 Weaver

Static Web Content

<HTML>
 <HEAD>
 <TITLE>Test Page</TITLE>
 </HEAD>
 <BODY>
 <H1>Test Page</H1>
 <P> This is a test!</P>

 </BODY>
</HTML>

Visiting this boring web page will just
display a bit of content.

Computer Science 161 Fall 2019 Weaver

Automatic Web Accesses

<HTML>
 <HEAD>
 <TITLE>Test Page</TITLE>
 </HEAD>
 <BODY>
 <H1>Test Page</H1>
 <P> This is a test!</P>

 </BODY>
</HTML>

Visiting this page will cause our browser
to automatically fetch the given URL.

Computer Science 161 Fall 2019 Weaver

Automatic Web Accesses

<HTML>
 <HEAD>
 <TITLE>Evil!</TITLE>
 </HEAD>
 <BODY>
 <H1>Test Page</H1> <!-- haha! -->
 <P> This is a test!</P>

 </BODY>
</HTML>

So if we visit a page under an attacker’s
control, they can have us visit other URLs

Computer Science 161 Fall 2019 Weaver

Automatic Web Accesses

<HTML>
 <HEAD>
 <TITLE>Test Page</TITLE>
 </HEAD>
 <BODY>
 <H1>Test Page</H1> <!-- haha! -->
 <P> This is a test!</P>

 </BODY>
</HTML>

When doing so, our browser will happily send
along cookies associated with the visited URL!
(any xyz.com cookies in this example) 😟

Computer Science 161 Fall 2019 Weaver

Automatic Web Accesses

<HTML>
 <HEAD>
 <TITLE>Evil!</TITLE>
 </HEAD>
 <BODY>
 <H1>Test Page</H1> <!-- haha! -->
 <P> This is a test!</P>

 </BODY>
</HTML> (Note, Javascript provides many other ways

for a page returned by an attacker to force
our browser to load a particular URL)

Computer Science 161 Fall 2019 Weaver

Web Accesses w/ Side Effects

• Recall our earlier banking URL:

• http://mybank.com/moneyxfer.cgi?account=alice&amt=50&to=bob

• So what happens if we visit evilsite.com, which includes:

• <img width=“1" height="1" src="http://mybank.com/

moneyxfer.cgi?Account=alice&amt=500000&to=DrEvil">

• Our browser issues the request … To get what will render as a 1x1 pixel
block

• … and dutifully includes authentication cookie! 😟

• Cross-Site Request Forgery (CSRF) attack

• Web server happily accepts the cookie

Computer Science 161 Fall 2019 Weaver

CSRF Scenario

Attack Server attacker.com

Server Victim mybank.com

User Victim

establish session

send forged request

visit server malicious page
containing URL to
mybank.com with bad

actions

1

2

3

4 (w/ cookie)

cookie for
mybank.com

Bank acts on request,
since it has valid
cookie for user

5

Computer Science 161 Fall 2019 Weaver

GET /do_squig?redirect=%2Fuserpage%3Fuser%3Ddilbert
 &squig=squigs+speak+a+deep+truth
COOKIE: "session_id=5321506"

Web action with predictable structure

URL fetch for posting a squig

Authenticated with cookie that
browser automatically sends along

Computer Science 161 Fall 2019 Weaver

CSRF and the Internet of Shit...

• Stupid IoT device has a default password

• http://10.0.1.1/login?user=admin&password=admin

• Sets the session cookie for future requests to authenticate the user

• Stupid IoT device also has remote commands

• http://10.0.1.1/set-dns-server?server=8.8.8.8

• Changes state in a way beneficial to the attacks

• Stupid IoT device doesn't implement CSRF defenses...

• Attackers can do mass malvertized drive-by attacks: 

Publish a JavaScript advertisement that does these two requests

Computer Science 161 Fall 2019 Weaver

CSRF and Malvertizing…

• You have some evil JavaScript:

• http://www.eviljavascript.com/pwnitall.js

• This JavaScript does the following:

• Opens a 1x1 frame pointing to 

http://www.eviljavascript.com/frame

• The frame then…

• Opens a gazillion different internal frames all to launch candidate xsrf attacks!

• Then get it to run by just paying for it!

• Or hacking sites to include <script src="http://...">

Computer Science 161 Fall 2019 Weaver

An attacker could
• add videos to a user’s "Favorites,"
• add himself to a user’s "Friend" or "Family" list,
• send arbitrary messages on the user’s behalf,
• flagged videos as inappropriate,
• automatically shared a video with a user’s contacts,

subscribed a user to a "channel" (a set of videos
published by one person or group), and

• added videos to a user’s "QuickList" (a list of videos
a user intends to watch at a later point).

2008 CSRF attack

Computer Science 161 Fall 2019 Weaver

Likewise Facebook

Computer Science 161 Fall 2019 Weaver

CSRF Defenses

• Referer (sic) Validation 
 
 

• Secret Validation Token 
 
 

• Note: only server can implement these

<input type=hidden value=23a3af01b>

Referer: http://www.facebook.com/
home.php

Computer Science 161 Fall 2019 Weaver

CRSF protection: Referer Validation

• When browser issues HTTP request, it includes a Referer
[sic] header that indicates which URL initiated the request

• This holds for any request, not just particular transactions

• And yes, it is a 30 year old spelling error we can't get rid of!

• Web server can use information in Referer header to
distinguish between same-site requests versus cross-site
requests

• Only allow same-site requests

Computer Science 161 Fall 2019 Weaver

GET /moneyxfer.cgi?account=alice&amt=50&to=bob HTTP/1.1
Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: mybank.com
Cookie: session=44ebc991
Referer: http://mybank.com/login.html?user=alice&pass...

HTTP Request

Method Resource HTTP version

Headers

Data (if POST; none for GET)

Blank line

Computer Science 161 Fall 2019 Weaver

Example of Referer Validation

Computer Science 161 Fall 2019 Weaver

Referer Validation Defense

• HTTP Referer header

• Referer: https://www.facebook.com/login.php

• Referer: http://www.anywhereelse.com/…

• Referer: (none)

• Strict policy disallows (secure, less usable)

• “Default deny”

• Lenient policy allows (less secure, more usable)

• “Default allow”

✓
✗

?

Computer Science 161 Fall 2019 Weaver

Referer Sensitivity Issues

• Referer may leak privacy-sensitive information

• http://intranet.corp.apple.com/projects/iphone/competitors.html

• Common sources of blocking:

• Network stripping by the organization

• Network stripping by local machine

• Stripped by browser for HTTPS → HTTP transitions

• User preference in browser

Hence, such blocking might help
attackers in the lenient policy

case

Computer Science 161 Fall 2019 Weaver

Secret Token Validation

• goodsite.com server includes a secret token into the
webpage (e.g., in forms as an additional field)

• This needs to be effectively random: The attacker can't know this

• Legit requests to goodsite.com send back the secret

• So the server knows it was from a page on goodsite.com

• goodsite.com server checks that token in request
matches is the expected one; reject request if not

• Key property: 
This secret must not be accessible cross-origin

Computer Science 161 Fall 2019 Weaver

Storing session tokens:  
Lots of options (but none are perfect)
• Short Lived Browser cookie: 
Set-Cookie: SessionToken=fduhye63sfdb

• But well, CSRF can still work, just only for a limited time

• Embedd in all URL links: 
https://site.com/checkout?SessionToken=kh7y3b

• ICK, ugly… Oh, and the referer: field leaks this!

• In a hidden form field:  
<input type=“hidden” name=“sessionid” value=“kh7y3b”>

• ICK, ugly… And can only be used to go between pages in short lived sessions

• Fundamental problem: Web security is grafted on

Computer Science 161 Fall 2019 Weaver

Latest Defense: 
‘SameSite’ Cookies
• An additional flag on

cookies

• Tells the browser to not send the

cookie if the referring page is not
the cookie origin

• Problem is adoption:  
Not all browsers support
it!

• But 88% may be "good enuf"

depending on application

• Could possibly ban non-

implementing browsers

Computer Science 161 Fall 2019 Weaver

CSRF: Summary

• Target: user who has some sort of account on a vulnerable server where
requests from the user’s browser to the server have a predictable structure

• Attacker goal: make requests to the server via the user’s browser that look to
server like user intended to make them

• Attacker tools: ability to get user to visit a web page under the attacker’s control

• Key tricks:

• (1) requests to web server have predictable structure;

• (2) use of or such to force victim’s browser to issue such a (predictable) request

• Notes: (1) do not confuse with Cross-Site Scripting (XSS); 
(2) attack only requires HTML, no need for Javascript

• Defenses are server side

