
Computer Science 161 Fall 2019 Weaver

Web User Interfaces

1

Computer Science 161 Fall 2019 Weaver

Bug Of The Day

• Not strictly a security bug: 
https://arstechnica.com/information-technology/2019/10/
chemists-discover-cross-platform-python-scripts-not-so-
cross-platform/

2

Computer Science 161 Fall 2019 Weaver

Root Cause: 
Undefined but platform deterministic behavior
• Python is generally supposed to be "cross platform"

• Can run on anything that supports it

• But there is a lot of behavior that is platform dependent

• Notably anything touching files

• One example, the rules for matching in glob.glob are
specified, but the order isn't...

3

Computer Science 161 Fall 2019 Weaver

In Practice: 
Unspecified but deterministic
• Windows would produce the list in one way, linux another

• But within each OS, it would be consistent

• Thus the code would give different results, but it "Worked fine for us"

• Useful paradigm:

• If you have some unspecified behavior, make sure it is random each time!

• golang does this with thread execution

4

Computer Science 161 Fall 2019 Weaver

So Far: Attacks involving just the server  
or browser/server interactions
• Good "cheatsheets": https://github.com/OWASP/CheatSheetSeries

• SQL injection & command injection

• Server only attacks: uploaded data is processed as code on the server

• Root cause: Too-powerful APIs

• Things like system() and raw SQL queries

• Solution: Use better APIs like execve() and SQL prepared statements

• Cross Site Request Forgery (CSRF/XSRF)

• Server/client attacks: client "tricked" into sending request with cookies to the server

• Does not require JavaScript!

• Root cause: Base web design didn't include a clean mechanism to specify origin for requests

• Solution: Hidden tokens, toolkits that do this automatically, Cookies with the "SameSite"

attribute.
5

Computer Science 161 Fall 2019 Weaver

Cross Site Scripting

• Stored/Reflected XSS

• Client receives JavaScript "from server"

• But server was tricked into providing attacker's JavaScript

• Stored: Server tricked into storing, get target to visit the page

• Common pattern is uploaded user content that others can see

• Reflected: Server tricked into displaying as part of the URL

• Common pattern is query reflected back in the page results

• Solution:

• Only allow user content in some specific types of locations

• And even then, you need to escape some or all non alphanumeric characters

• Ideally use a sanitizer

• Content Security Policy: tell the browser to only accept scripts from limited locations

• And no inline scripts period

6

Computer Science 161 Fall 2019 Weaver

Misleading Users

• Browser assumes clicks & keystrokes = clear indication of
what the user wants to do

• Constitutes part of the user’s trusted path

• Attacker can meddle with integrity of this relationship in
different ways …

7

Computer Science 161 Fall 2019 Weaver

8

Navigate to www.berkeley.edu

Computer Science 161 Fall 2019 Weaver

9

Same, but smaller window. 
Mouse anywhere over the region points to 
https://crowdfund.berkeley.edu

Computer Science 161 Fall 2019 Weaver

10

Let's load www.berkeley.edu
<p>
<div>
<iframe src="http://www.berkeley.edu"
width=500 height=500></iframe>
</div>

We load www.berkeley.edu in an iframe

Computer Science 161 Fall 2019 Weaver

11

Any Javascript in the surrounding window
can’t generate synthetic clicks in the
framed window due to Same Origin Policy

Computer Science 161 Fall 2019 Weaver

12

Though of course if the user themselves
clicks in the framed window, that “counts”
…

Computer Science 161 Fall 2019 Weaver

13

Computer Science 161 Fall 2019 Weaver

14

Let's load www.berkeley.edu
<p>
<div style="position:absolute; top: 0px;">
<iframe src="http://www.berkeley.edu"
width=500 height=500></iframe>
</div>

We position the iframe to completely
overlap with the outer frame

Computer Science 161 Fall 2019 Weaver

15

Computer Science 161 Fall 2019 Weaver

16

Let's load www.berkeley.edu
<p>
<div style="position:absolute; top: 40px;">
<iframe src="http://www.berkeley.edu"
width=500 height=500></iframe>
</div>

We nudge the iframe’s position a bit below
the top so we can see our outer frame text

Computer Science 161 Fall 2019 Weaver

17

Computer Science 161 Fall 2019 Weaver

18

<style> .bigspace { margin-top: 210pt; } </style>
Let's load www.berkeley.edu
<p class="bigspace">
You Know You Want To Click Here!
<p>
<div style="position:absolute; top: 40px;">
<iframe src="http://www.berkeley.edu" width=500
height=500></iframe>
</div>

We add marked-up text to the outer
frame, about 3 inches from the top

Computer Science 161 Fall 2019 Weaver

19

Computer Science 161 Fall 2019 Weaver

20

<style> .bigspace { margin-top: 210pt; } </style>
<style> div { opacity: 0.8; } </style>
Let's load www.berkeley.edu, opacity 0.8
<p class="bigspace">
You Know You Want To Click Here!
<p>
<div style="position:absolute; top: 40px;">
<iframe src="http://www.berkeley.edu" width=500
height=500></iframe>
</div>

We make the iframe partially transparent

Computer Science 161 Fall 2019 Weaver

21

Computer Science 161 Fall 2019 Weaver

22

<style> .bigspace { margin-top: 210pt; } </style>
<style> div { opacity: 0.1; } </style>
Let's load www.berkeley.edu, opacity 0.1
<p class="bigspace">
You Know You Want To Click Here!
<p>
<div style="position:absolute; top: 40px;">
<iframe src="http://www.berkeley.edu" width=500
height=500></iframe>
</div>

We make the iframe highly transparent

Computer Science 161 Fall 2019 Weaver

23

Computer Science 161 Fall 2019 Weaver

24

<style> .bigspace { margin-top: 210pt; } </style>
<style> div { opacity: 0; } </style>
Let's load www.berkeley.edu, opacity 0
<p class="bigspace">
You Know You Want To Click Here!
<p>
<div style="position:absolute; top: 40px;">
<iframe src="http://www.berkeley.edu" width=500
height=500></iframe>
</div>

We make the iframe entirely transparent

Computer Science 161 Fall 2019 Weaver

25

Click anywhere over the region goes to 
https://crowdfund.berkeley.edu

Computer Science 161 Fall 2019 Weaver

26

Computer Science 161 Fall 2019 Weaver

Clickjacking

• By placing an invisible iframe of target.com over some enticing
content, a malicious web server can fool a user into taking unintended
action on target.com …

• ... By placing a visible iframe of target.com under the attacker’s own
invisible iframe, a malicious web server can “steal” user input – in
particular, keystrokes

27

Computer Science 161 Fall 2019 Weaver

Clickjacking Defenses

• Require confirmation for actions (annoys users)

• Frame-busting: Web site ensures that its “vulnerable”

pages can’t be included as a frame inside another browser
frame

• So user can’t be looking at it with something invisible overlaid on top …

• … nor have the site invisible above something else

28

Computer Science 161 Fall 2019 Weaver

29

Attacker implements this by placing Twitter’s page in a
“Frame” inside their own page. Otherwise they wouldn’t

overlap.

Computer Science 161 Fall 2019 Weaver

Clickjacking Defenses

• Require confirmation for actions (annoys users)

• Frame-busting: Web site ensures that its “vulnerable”

pages can’t be included as a frame inside another browser
frame

• So user can’t be looking at it with something invisible overlaid on top …

• … nor have the site invisible above something else

• See OWASP’s “cheat sheet” for this too

30

Computer Science 161 Fall 2019 Weaver

Clickjacking Defenses

• Require confirmation for actions (annoys users)

• Frame-busting: Web site ensures that its “vulnerable”

pages can’t be included as a frame inside another browser
frame

• So user can’t be looking at it with something invisible overlaid on top …

• … nor have the site invisible above something else

• Another approach: HTTP X-Frame-Options header

• Allows white-listing of what domains – if any – are allowed to frame a given

page a server returns

31

Computer Science 161 Fall 2019 Weaver

Yes, there is a hell of a lot of grafted on 
web security...
• So far we've seen:

• Content-Security-Policy: (HTTP header)

• SameSite (Cookie attribute)

• And now X-Frame-Options (HTTP header)

• One curse of security: Backwards compatibility....

• We can't just throw out the old S@#)(*: people depend on it!

32

Computer Science 161 Fall 2019 Weaver

Phishing...

• Leveraging the richness of web pages...

• And user training!

33

Computer Science 161 Fall 2019 Weaver

34

Date: Thu, 9 Feb 2017 07:19:40 -0600
From: PayPal <alert@gnc.cc>
Subject: [Important] : This is an automatic message to : (vern)
To: vern@aciri.org

Computer Science 161 Fall 2019 Weaver

35

Computer Science 161 Fall 2019 Weaver

36

Computer Science 161 Fall 2019 Weaver

37

Computer Science 161 Fall 2019 Weaver

38

Computer Science 161 Fall 2019 Weaver

39

Computer Science 161 Fall 2019 Weaver

40

Computer Science 161 Fall 2019 Weaver

41

Computer Science 161 Fall 2019 Weaver

42

Computer Science 161 Fall 2019 Weaver

43

Computer Science 161 Fall 2019 Weaver

44

Computer Science 161 Fall 2019 Weaver

45

Computer Science 161 Fall 2019 Weaver

46

Computer Science 161 Fall 2019 Weaver

47

Computer Science 161 Fall 2019 Weaver

The Problem of Phishing

• Arises due to mismatch between reality & user’s:

• Perception of how to assess legitimacy

• Mental model of what attackers can control

• Both Email and Web

• Coupled with:

• Deficiencies in how web sites authenticate

• In particular, “replayable” authentication that  

is vulnerable to theft

• Attackers have many angles …
48

Computer Science 161 Fall 2019 Weaver

49

Computer Science 161 Fall 2019 Weaver

Homograph Attacks

• International domain names can use international character set

• E.g., Chinese contains characters that look like / . ? =

• Attack: Legitimately register var.cn …
• … buy legitimate set of HTTPS certificates for it …

• … and then create a subdomain: 

 www.pnc.com⁄webapp⁄unsec⁄homepage.var.cn

50

This is one subdomain

Computer Science 161 Fall 2019 Weaver

Check for a padlock?

51

Computer Science 161 Fall 2019 Weaver

52

Computer Science 161 Fall 2019 Weaver

53

Computer Science 161 Fall 2019 Weaver

Check for “green glow” in address bar?

54

Computer Science 161 Fall 2019 Weaver

Check for Everything?

55

Computer Science 161 Fall 2019 Weaver

56

“Browser in Browser”

Apparent browser is just a
fully interactive image
generated by Javascript
running in real browser!

Computer Science 161 Fall 2019 Weaver

So Why Does This Work?

• Because users are stupid?

57

Computer Science 161 Fall 2019 Weaver

Why does phishing work?

• User mental model vs. reality

• Browser security model too hard to

understand!

• The easy path is insecure; the secure
path takes extra effort

• Risks are rare

• Users tend not to suspect malice; they
find benign interpretations and have
been acclimated to failure

• And as a bonus, we actively train users
to be phished!

58

Computer Science 161 Fall 2019 Weaver

Two Factor

• Because people chose bad passwords...

• Add a second authentication path

• Relies on the user having access to something orthogonal
to the password

• Cellphone or email

• Security Token/Authenticator App

• FIDO U2F/FIDO2 security key

59

Computer Science 161 Fall 2019 Weaver

Second Communication Channel...

• Provide the "security code" (4-8 digits) transmitted "out of
band"

• Cellphone SMS

• Email

• Still vulnerable to transient phishing (a relay attack)...

• Phishing site immediately tries to log in as the user...

• Sees 2-factor is in use

• Presents a fake "2-Factor" challenge

• Passes the result to the site... 

BOOM, logged in!
60

Computer Science 161 Fall 2019 Weaver

Authentication Tokens/Apps

• RSA Securid and Google Authenticator

• Token and site share a common secret key

• Display first 6 digits of: HMAC(K, time)

• Time rounded to 30 seconds

• Verify:

• If code == HMAC(K, time) or HMAC(K, time+30) or HMAC(K, time-30), OK

• Still vulnerable to transient phishing!

• But code is relatively small...

• Assumes some limit on brute-forcing: After 3+ tries, start adding delays

61

Computer Science 161 Fall 2019 Weaver

Bigger Point of those 2FA protections: 
Credential stuffing
• Since people reuse passwords all the time

• Attacker compromises one site

• Then uses the resulting data to get everyone's password

• Brute force the password hashes

• Now attacker reuses those passwords on every other site

• Basic 2FA prevents that

• The password alone is no longer enough to log in

62

Computer Science 161 Fall 2019 Weaver

FIDO U2F/FIDO2 Security Key

• Two operations:

• Register Site:

• Generate a new public/private key pair and present it to the site

• Verify:

• Given a nonce, site, and key ID, sign the nonce and return it

• Nonce (provided by server) prevents replay attack

• Site is verified as allowed for the key ID, prevents relay attack

• Both operations require user presence

• Can't happen in the background, need to "touch" the key

• But an optional "no touch needed" mode is supported

• Can't be phished!

• A phishing site will fail the site verification

63

Computer Science 161 Fall 2019 Weaver

CAPTCHAs: 
How Lazy Cryptographers Do AI
• The whole point of CAPCHAs is not just to solve "is this

human"...

• But leverage bad guys to force them to solve hard problems

• Primarily focused on machine vision problems

64

Computer Science 161 Fall 2019 Weaver

65

Computer Science 161 Fall 2019 Weaver

CAPTCHAs

• Reverse Turing Test: present “user” a challenge that’s easy for a
human to solve, hard for a program to solve

• One common approach: distorted text that’s difficult for character-
recognition algorithms to decipher

66

Computer Science 161 Fall 2019 Weaver

67

Problems?

Computer Science 161 Fall 2019 Weaver

68

Computer Science 161 Fall 2019 Weaver

Issues with CAPTCHAs

• Inevitable arms race: as solving algorithms get better, defense erodes

69

Computer Science 161 Fall 2019 Weaver

Issues with CAPTCHAs

• Inevitable arms race: as solving algorithms get better, defense erodes,
or gets harder for humans

70

Computer Science 161 Fall 2019 Weaver

71

Computer Science 161 Fall 2019 Weaver

Issues with CAPTCHAs

• Inevitable arms race: as solving algorithms get better, defense erodes,
or gets harder for humans

72

• Accessibility: not all humans can see
• Granularity: not all bots are bad 

(e.g., crawlers)

Computer Science 161 Fall 2019 Weaver

Issues with CAPTCHAs, con’t

• Deepest problem: CAPTCHAs are inherently vulnerable to
outsourcing attacks

• Attacker gets real humans to solve them

73

Computer Science 161 Fall 2019 Weaver

74

Computer Science 161 Fall 2019 Weaver

75

Computer Science 161 Fall 2019 Weaver

76

Computer Science 161 Fall 2019 Weaver

These Days: 
CAPTCHAs are ways of training AI systems

77

