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Web User Interfaces
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Bug Of The Day

• Not strictly a security bug: 
https://arstechnica.com/information-technology/2019/10/
chemists-discover-cross-platform-python-scripts-not-so-
cross-platform/
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Root Cause: 
Undefined but platform deterministic behavior
• Python is generally supposed to be "cross platform"

• Can run on anything that supports it


• But there is a lot of behavior that is platform dependent

• Notably anything touching files


• One example, the rules for matching in glob.glob are 
specified, but the order isn't...

3



Computer Science 161 Fall 2019 Weaver

In Practice: 
Unspecified but deterministic
• Windows would produce the list in one way, linux another

• But within each OS, it would be consistent

• Thus the code would give different results, but it "Worked fine for us"


• Useful paradigm:

• If you have some unspecified behavior, make sure it is random each time!

• golang does this with thread execution
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So Far: Attacks involving just the server  
or browser/server interactions
• Good "cheatsheets": https://github.com/OWASP/CheatSheetSeries

• SQL injection & command injection

• Server only attacks: uploaded data is processed as code on the server

• Root cause: Too-powerful APIs

• Things like system() and raw SQL queries


• Solution: Use better APIs like execve() and SQL prepared statements


• Cross Site Request Forgery (CSRF/XSRF)

• Server/client attacks:  client "tricked" into sending request with cookies to the server

• Does not require JavaScript!


• Root cause:  Base web design didn't include a clean mechanism to specify origin for requests

• Solution: Hidden tokens, toolkits that do this automatically, Cookies with the "SameSite" 

attribute.
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Cross Site Scripting

• Stored/Reflected XSS

• Client receives JavaScript "from server"

• But server was tricked into providing attacker's JavaScript

• Stored: Server tricked into storing, get target to visit the page

• Common pattern is uploaded user content that others can see


• Reflected: Server tricked into displaying as part of the URL

• Common pattern is query reflected back in the page results


• Solution:

• Only allow user content in some specific types of locations

• And even then, you need to escape some or all non alphanumeric characters

• Ideally use a sanitizer


• Content Security Policy: tell the browser to only accept scripts from limited locations

• And no inline scripts period
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Misleading Users

• Browser assumes clicks & keystrokes = clear indication of 
what the user wants to do


• Constitutes part of the user’s trusted path


• Attacker can meddle with integrity of this relationship in 
different ways …
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Navigate to www.berkeley.edu
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Same, but smaller window. 
Mouse anywhere over the region points to 
https://crowdfund.berkeley.edu
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Let's load www.berkeley.edu 
<p> 
<div> 
<iframe src="http://www.berkeley.edu" 
width=500 height=500></iframe> 
</div> 

We load www.berkeley.edu in an iframe
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Any Javascript in the surrounding window 
can’t generate synthetic clicks in the 
framed window due to Same Origin Policy
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Though of course if the user themselves 
clicks in the framed window, that “counts” 
…
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Let's load www.berkeley.edu 
<p> 
<div style="position:absolute; top: 0px;"> 
<iframe src="http://www.berkeley.edu" 
width=500 height=500></iframe> 
</div>

We position the iframe to completely 
overlap with the outer frame
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Let's load www.berkeley.edu 
<p> 
<div style="position:absolute; top: 40px;"> 
<iframe src="http://www.berkeley.edu" 
width=500 height=500></iframe> 
</div>

We nudge the iframe’s position a bit below 
the top so we can see our outer frame text
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<style> .bigspace { margin-top: 210pt; } </style> 
Let's load www.berkeley.edu 
<p class="bigspace"> 
<em>You <b>Know</b> You Want To Click Here!</em> 
<p> 
<div style="position:absolute; top: 40px;"> 
<iframe src="http://www.berkeley.edu" width=500 
height=500></iframe> 
</div>

We add marked-up text to the outer 
frame, about 3 inches from the top
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<style> .bigspace { margin-top: 210pt; } </style> 
<style> div { opacity: 0.8; } </style> 
Let's load www.berkeley.edu, opacity 0.8 
<p class="bigspace"> 
<em>You <b>Know</b> You Want To Click Here!</em> 
<p> 
<div style="position:absolute; top: 40px;"> 
<iframe src="http://www.berkeley.edu" width=500 
height=500></iframe> 
</div>

We make the iframe partially transparent
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<style> .bigspace { margin-top: 210pt; } </style> 
<style> div { opacity: 0.1; } </style> 
Let's load www.berkeley.edu, opacity 0.1 
<p class="bigspace"> 
<em>You <b>Know</b> You Want To Click Here!</em> 
<p> 
<div style="position:absolute; top: 40px;"> 
<iframe src="http://www.berkeley.edu" width=500 
height=500></iframe> 
</div>

We make the iframe highly transparent
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<style> .bigspace { margin-top: 210pt; } </style> 
<style> div { opacity: 0; } </style> 
Let's load www.berkeley.edu, opacity 0 
<p class="bigspace"> 
<em>You <b>Know</b> You Want To Click Here!</em> 
<p> 
<div style="position:absolute; top: 40px;"> 
<iframe src="http://www.berkeley.edu" width=500 
height=500></iframe> 
</div>

We make the iframe entirely transparent
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Click anywhere over the region goes to 
https://crowdfund.berkeley.edu
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Clickjacking

• By placing an invisible iframe of target.com over some enticing 
content, a malicious web server can fool a user into taking unintended 
action on target.com …


• ... By placing a visible iframe of target.com under the attacker’s own 
invisible iframe, a malicious web server can “steal” user input – in 
particular, keystrokes
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Clickjacking Defenses

• Require confirmation for actions (annoys users)

• Frame-busting: Web site ensures that its “vulnerable” 

pages can’t be included as a frame inside another browser 
frame


• So user can’t be looking at it with something invisible overlaid on top …

• … nor have the site invisible above something else
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Attacker implements this by placing Twitter’s page in a 
“Frame” inside their own page.  Otherwise they wouldn’t 

overlap.
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Clickjacking Defenses

• Require confirmation for actions (annoys users)

• Frame-busting: Web site ensures that its “vulnerable” 

pages can’t be included as a frame inside another browser 
frame


• So user can’t be looking at it with something invisible overlaid on top …

• … nor have the site invisible above something else


• See OWASP’s “cheat sheet” for this too
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Clickjacking Defenses

• Require confirmation for actions (annoys users)

• Frame-busting: Web site ensures that its “vulnerable” 

pages can’t be included as a frame inside another browser 
frame


• So user can’t be looking at it with something invisible overlaid on top …

• … nor have the site invisible above something else


• Another approach: HTTP X-Frame-Options header

• Allows white-listing of what domains – if any – are allowed to frame a given 

page a server returns
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Yes, there is a hell of a lot of grafted on 
web security...
• So far we've seen:

• Content-Security-Policy: (HTTP header)

• SameSite (Cookie attribute)

• And now X-Frame-Options (HTTP header)


• One curse of security: Backwards compatibility....

• We can't just throw out the old S@#)(*: people depend on it!
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Phishing...

• Leveraging the richness of web pages...

• And user training!
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Date:  Thu, 9 Feb 2017 07:19:40 -0600 
From:  PayPal <alert@gnc.cc> 
Subject:  [Important] : This is an automatic message to : (vern) 
To:  vern@aciri.org
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The Problem of Phishing

• Arises due to mismatch between reality & user’s:

• Perception of how to assess legitimacy

• Mental model of what attackers can control

• Both Email and Web


• Coupled with:

• Deficiencies in how web sites authenticate

• In particular, “replayable” authentication that  

is vulnerable to theft


• Attackers have many angles …
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Homograph Attacks

• International domain names can use international character set

• E.g., Chinese contains characters that look like / . ? =


• Attack: Legitimately register var.cn … 
• … buy legitimate set of HTTPS certificates for it …

• … and then create a subdomain: 

    www.pnc.com⁄webapp⁄unsec⁄homepage.var.cn 

50

This is one subdomain
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Check for a padlock?
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Check for “green glow” in address bar?
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Check for Everything?
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“Browser in Browser”

Apparent browser is just a 
fully interactive image 
generated by Javascript 
running in real browser!
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So Why Does This Work?

• Because users are stupid?
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Why does phishing work?

• User mental model vs. reality

• Browser security model too hard to 

understand!


• The easy path is insecure; the secure 
path takes extra effort


• Risks are rare


• Users tend not to suspect malice; they 
find benign interpretations and have 
been acclimated to failure 

• And as a bonus, we actively train users 
to be phished!
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Two Factor

• Because people chose bad passwords...

• Add a second authentication path


• Relies on the user having access to something orthogonal 
to the password


• Cellphone or email

• Security Token/Authenticator App

• FIDO U2F/FIDO2 security key
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Second Communication Channel...

• Provide the "security code" (4-8 digits) transmitted "out of 
band"


• Cellphone SMS

• Email


• Still vulnerable to transient phishing (a relay attack)...

• Phishing site immediately tries to log in as the user...

• Sees 2-factor is in use

• Presents a fake "2-Factor" challenge

• Passes the result to the site... 

BOOM, logged in!
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Authentication Tokens/Apps

• RSA Securid and Google Authenticator

• Token and site share a common secret key


• Display first 6 digits of: HMAC(K, time)

• Time rounded to 30 seconds


• Verify:

• If code == HMAC(K, time) or HMAC(K, time+30) or HMAC(K, time-30), OK


• Still vulnerable to transient phishing!

• But code is relatively small...

• Assumes some limit on brute-forcing: After 3+ tries, start adding delays
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Bigger Point of those 2FA protections: 
Credential stuffing
• Since people reuse passwords all the time

• Attacker compromises one site

• Then uses the resulting data to get everyone's password

• Brute force the password hashes


• Now attacker reuses those passwords on every other site

• Basic 2FA prevents that

• The password alone is no longer enough to log in
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FIDO U2F/FIDO2 Security Key

• Two operations:

• Register Site:

• Generate a new public/private key pair and present it to the site


• Verify:

• Given a nonce, site, and key ID, sign the nonce and return it

• Nonce (provided by server) prevents replay attack

• Site is verified as allowed for the key ID, prevents relay attack


• Both operations require user presence

• Can't happen in the background, need to "touch" the key

• But an optional "no touch needed" mode is supported


• Can't be phished!

• A phishing site will fail the site verification
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CAPTCHAs: 
How Lazy Cryptographers Do AI
• The whole point of CAPCHAs is not just to solve "is this 

human"...

• But leverage bad guys to force them to solve hard problems

• Primarily focused on machine vision problems
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CAPTCHAs

• Reverse Turing Test: present “user” a challenge that’s easy for a 
human to solve, hard for a program to solve


• One common approach: distorted text that’s difficult for character-
recognition algorithms to decipher
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Problems?
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Issues with CAPTCHAs

• Inevitable arms race: as solving algorithms get better, defense erodes
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Issues with CAPTCHAs

• Inevitable arms race: as solving algorithms get better, defense erodes, 
or gets harder for humans
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Issues with CAPTCHAs

• Inevitable arms race: as solving algorithms get better, defense erodes, 
or gets harder for humans

72

• Accessibility: not all humans can see 
• Granularity: not all bots are bad 

(e.g., crawlers)
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Issues with CAPTCHAs, con’t

• Deepest problem: CAPTCHAs are inherently vulnerable to 
outsourcing attacks

• Attacker gets real humans to solve them
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These Days: 
CAPTCHAs are ways of training AI systems
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