
Computer Science 161 Fall 2019 Weaver

The Net Part 4: DNS, IP, TCP...

1

Computer Science 161 Fall 2019 Weaver

Spot the Zero Day: 
TPLink Miniature Wireless Router

2

Computer Science 161 Fall 2019 Weaver

Spot the Zero Forever Day: 
TPLink Miniature Wireless Router

3

Computer Science 161 Fall 2019 Weaver

DNS Threats

• DNS: path-critical for just about everything we do

• Maps hostnames ⇔ IP addresses

• Design only scales if we can minimize lookup traffic

• #1 way to do so: caching

• #2 way to do so: return not only answers to queries, but additional info that will likely be needed shortly

• The "glue records"

• What if attacker eavesdrops on our DNS queries?

• Then similar to DHCP, ARP, AirPwn etc, can spoof responses

• Consider attackers who can’t eavesdrop - but still aim to manipulate us
via how the protocol functions

• Directly interacting w/ DNS: dig program on Unix

• Allows querying of DNS system

• Dumps each field in DNS responses

4

Computer Science 161 Fall 2019 Weaver

5

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

Use Unix “dig” utility to look up IP address
(“A”) for hostname eecs.mit.edu via DNS

Computer Science 161 Fall 2019 Weaver

6

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

The question we asked the server

Computer Science 161 Fall 2019 Weaver

7

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

A 16-bit transaction identifier that enables
the DNS client (dig, in this case) to match up
the reply with its original request

Computer Science 161 Fall 2019 Weaver

8

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

“Answer” tells us the IP address associated
with eecs.mit.edu is 18.62.1.6 and we
can cache the result for 21,600 seconds

Computer Science 161 Fall 2019 Weaver

9

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

In general, a single Resource Record (RR) like
this includes, left-to-right, a DNS name, a time-
to-live, a family (IN for our purposes - ignore),
a type (A here), and an associated value

Computer Science 161 Fall 2019 Weaver

10

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

“Authority” tells us the name servers responsible for
the answer. Each RR gives the hostname of a different
name server (“NS”) for names in mit.edu. We should
cache each record for 11,088 seconds.

If the “Answer” had been empty, then the resolver’s
next step would be to send the original query to one of
these name servers.

Computer Science 161 Fall 2019 Weaver

11

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

“Additional” provides extra information to save us from
making separate lookups for it, or helps with bootstrapping.

 
Here, it tells us the IP addresses for the hostnames of the
name servers. We add these to our cache.

Computer Science 161 Fall 2019 Weaver

DNS Protocol

Lightweight exchange of query and reply
messages, both with same message format

Primarily uses UDP for its transport protocol, which
is what we’ll assume

Servers are on port 53 always

Frequently, clients used to use port 53 but can use
any port

12

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

 SRC port DST port

checksum length

16 bits 16 bits

UDP Payload

UDP Header

DNS 
Query 

or 
Reply

IP Header

Computer Science 161 Fall 2019 Weaver

13

Message header:

• Identification: 16 bit # for query,

reply to query uses same #

• Along with repeating the Question

and providing Answer(s), replies
can include “Authority” (name
server responsible for answer) and
“Additional” (info client is likely to
look up soon anyway)

• Each Resource Record has a Time
To Live (in seconds) for caching
(not shown)

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits

IP Header

Computer Science 161 Fall 2019 Weaver

14

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

What if the mit.edu server
is untrustworthy? Could
its operator steal, say, all
of our web surfing to
berkeley.edu’s main web
server?

Computer Science 161 Fall 2019 Weaver

15

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

Let’s look at a flaw in the
original DNS design
(since fixed)

Computer Science 161 Fall 2019 Weaver

16

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS www.berkeley.edu.

;; ADDITIONAL SECTION:
www.berkeley.edu. 100000 IN A 18.6.6.6
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

What could happen if the mit.edu server
returns the following to us instead?

Computer Science 161 Fall 2019 Weaver

17

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS www.berkeley.edu.

;; ADDITIONAL SECTION:
www.berkeley.edu. 100000 IN A 18.6.6.6
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

We’d dutifully store in our cache a mapping of
www.berkeley.edu to an IP address under MIT’s
control. (It could have been any IP address they
wanted, not just one of theirs.)

Computer Science 161 Fall 2019 Weaver

18

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS www.berkeley.edu.

;; ADDITIONAL SECTION:
www.berkeley.edu. 100000 IN A 18.6.6.6
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

In this case they chose to make the
mapping last a long time. They could
just as easily make it for just a couple
of seconds.

Computer Science 161 Fall 2019 Weaver

19

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 30 IN NS www.berkeley.edu.

;; ADDITIONAL SECTION:
www.berkeley.edu. 30 IN A 18.6.6.6
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

How do we fix such cache poisoning?

Computer Science 161 Fall 2019 Weaver

20

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS www.berkeley.edu.

;; ADDITIONAL SECTION:
www.berkeley.edu. 100000 IN A 18.6.6.6
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

Don’t accept Additional records unless
they’re for the domain we’re looking up

E.g., looking up eecs.mit.edu ⇒ only accept
additional records from *.mit.edu

No extra risk in accepting these since server could return
them to us directly in an Answer anyway.

This is called "Bailiwick checking"

Computer Science 161 Fall 2019 Weaver

DNS Resource Records and RRSETs

• DNS records (Resource Records) can be one of various types

• Name TYPE Value

• Also a “time to live” field: how long in seconds this entry can be cached for

• Addressing:

• A: IPv4 addresses

• AAAA: IPv6 addresses

• CNAME: aliases, “Name X should be name Y”

• MX: “the mailserver for this name is Y”

• DNS related:

• NS: “The authority server you should contact is named Y”

• SOA: “The operator of this domain is Y”

• Other:

• text records, cryptographic information, etc….

• Groups of records of the same type form RRSETs:

• E.g. all the nameservers for a given domain.

21

Computer Science 161 Fall 2019 Weaver

The Many Moving Pieces
In a DNS Lookup of www.isc.org

22

.
Authority Server
(the “root”)

User’s ISP’s
Recursive Resolver
Name Type Value TTL

? A www.isc.org

? A www.isc.org

? A www.isc.org  
Answers:
Authority:
org. NS a0.afilias-nst.info
Additional:  
a0.afilias-nst.info A 199.19.56.1

Computer Science 161 Fall 2019 Weaver

The Many Moving Pieces
In a DNS Lookup of www.isc.org

23

org.
Authority Server

User’s ISP’s
Recursive Resolver
Name Type Value TTL

org. NS a0.afilias-nst.info 172800

a0.afilias-nst.info. A 199.19.56.1 172800

? A www.isc.org  
Answers:
Authority:
isc.org. NS sfba.sns-pb.isc.org.
isc.org. NS ns.isc.afilias-nst.info.
Additional:  
sfba.sns-pb.isc.org. A 199.6.1.30
ns.isc.afilias-nst.info. A 199.254.63.254

? A www.isc.org

Computer Science 161 Fall 2019 Weaver

The Many Moving Pieces
In a DNS Lookup of www.isc.org

24

isc.org.
Authority Server

User’s ISP’s
Recursive Resolver

? A www.isc.org  
Answers:
www.isc.org. A 149.20.64.42
Authority:
isc.org. NS sfba.sns-pb.isc.org.
isc.org. NS ns.isc.afilias-nst.info.
Additional:  
sfba.sns-pb.isc.org. A 199.6.1.30
ns.isc.afilias-nst.info. A 199.254.63.254

? A www.isc.org

Name Type Value TTL

org. NS a0.afilias-nst.info 172800

a0.afilias-nst.info. A 199.19.56.1 172800

isc.org. NS sfba.sns-pb.isc.org. 86400

isc.org. NS ns.isc.afilias-net.info. 86400

sfbay.sns-pb.isc.org. A 199.6.1.30 86400

Computer Science 161 Fall 2019 Weaver

The Many Moving Pieces
In a DNS Lookup of www.isc.org

25

User’s ISP’s
Recursive Resolver

? A www.isc.org
Answers: www.isc.org A 149.20.64.42

Name Type Value TTL

org. NS a0.afilias-nst.info 172800

a0.afilias-nst.info. A 199.19.56.1 172800

isc.org. NS sfba.sns-pb.isc.org. 86400

isc.org. NS ns.isc.afilias-net.info. 86400

sfbay.sns-pb.isc.org. A 199.6.1.30 86400

www.isc.org A 149.20.64.42 600

Computer Science 161 Fall 2019 Weaver

Stepping Through This
With dig
• Some flags of note:

• +norecurse: Ask directly like a recursive resolver does

• +trace: Act like a recursive resolver without a cache

26

nweaver% dig +norecurse slashdot.org @a.root-servers.net

; <<>> DiG 9.8.3-P1 <<>> +norecurse slashdot.org @a.root-servers.net
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 26444
;; flags: qr; QUERY: 1, ANSWER: 0, AUTHORITY: 6, ADDITIONAL: 12

;; QUESTION SECTION:
;slashdot.org. IN A

;; AUTHORITY SECTION:
org. 172800 IN NS a0.org.afilias-nst.info.
...

;; ADDITIONAL SECTION:
a0.org.afilias-nst.info. 172800 IN A 199.19.56.1
...

Computer Science 161 Fall 2019 Weaver

So in dig parlance

• So if you want to recreate the lookups conducted by the
recursive resolver:

• dig +norecurse www.isc.org @a.root-servers.net

• dig +norecurse www.isc.org @199.19.56.1

• dig +norecurse www.isc.org @199.6.1.30

27

Computer Science 161 Fall 2019 Weaver

Security risk #1: malicious DNS server

• Of course, if any of the DNS servers queried are malicious,
they can lie to us and fool us about the answer to our DNS
query…

• and they used to be able to fool us about the answer to
other queries, too, using cache poisoning. Now fixed
(phew).

28

Computer Science 161 Fall 2019 Weaver

Security risk #2: on-path eavesdropper

• If attacker can eavesdrop on our traffic… 
we’re hosed.

• Why?

29

Computer Science 161 Fall 2019 Weaver

Security risk #2: on-path eavesdropper

• If attacker can eavesdrop on our traffic… 
we’re hosed.

• Why? They can see the query and the 16-bit transaction
identifier, and race to send a spoofed response to our
query.

• China does this operationally:

• dig www.benign.com @www.tsinghua.edu.cn
• dig www.facebook.com @www.tsinghua.edu.en

30

Computer Science 161 Fall 2019 Weaver

Security risk #3: off-path attacker

• If attacker can’t eavesdrop on our traffic, can he inject
spoofed DNS responses?

• Answer: It used to be possible, via blind spoofing. 
We’ve since deployed mitigations that makes this harder
(but not totally impossible).

31

Computer Science 161 Fall 2019 Weaver

Blind spoofing

32

• Say we look up
mail.google.com; how can
an off-path attacker feed us a
bogus A answer before the
legitimate server replies?

• How can such a remote
attacker even know we are
looking up
mail.google.com? 

... ...

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits

 Suppose, e.g., we visit a web
page under their control:

Computer Science 161 Fall 2019 Weaver

Blind spoofing

33

• Say we look up
mail.google.com; how can
an off-path attacker feed us a
bogus A answer before the
legitimate server replies?

• How can such an attacker
even know we are looking up
mail.google.com? 
Suppose, e.g., we visit a web
page under their control:

... ...

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits

This HTML snippet causes our
browser to try to fetch an image from
mail.google.com. To do that, our
browser first has to look up the IP
address associated with that name.

Computer Science 161 Fall 2019 Weaver

Blind spoofing

34

So this will be k+1

They observe ID k here

Originally, identification field
incremented by 1 for each
request. How does attacker
guess it?

Once they know we’re looking
it up, they just have to guess
the Identification field and reply
before legit server. 
 
How hard is that?

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits

Fix?

Computer Science 161 Fall 2019 Weaver

DNS Blind Spoofing, cont.

35

Attacker can send lots of replies,
not just one …

However: once reply from legit
server arrives (with correct
Identification), it’s cached and
no more opportunity to poison it.
Victim is innoculated!

Once we randomize the
Identification, attacker has a
1/65536 chance of guessing it
correctly. 
Are we pretty much safe?

Unless attacker can send
1000s of replies before legit
arrives, we’re likely safe –
phew! ?

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits

Computer Science 161 Fall 2019 Weaver

Enter Kaminski... 
Glue Attacks
• Dan Kaminski noticed

something strange,
however...

• Most DNS servers would cache

the in-bailiwick glue...

• And then promote the glue

• And will also update entries

based on glue

• So if you first did this
lookup...

• And then went to  

a0.org.afilias-nst.info

• there would be no other lookup!

36

nweaver% dig +norecurse slashdot.org @a.root-servers.net

; <<>> DiG 9.8.3-P1 <<>> +norecurse slashdot.org @a.root-servers.net
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 26444
;; flags: qr; QUERY: 1, ANSWER: 0, AUTHORITY: 6, ADDITIONAL: 12

;; QUESTION SECTION:
;slashdot.org. IN A

;; AUTHORITY SECTION:
org. 172800 IN NS a0.org.afilias-nst.info.
...

;; ADDITIONAL SECTION:
a0.org.afilias-nst.info. 172800 IN A 199.19.56.1
...

;; Query time: 128 msec
;; SERVER: 198.41.0.4#53(198.41.0.4)
;; WHEN: Tue Apr 16 09:48:32 2013
;; MSG SIZE rcvd: 432

Computer Science 161 Fall 2019 Weaver

The Kaminski Attack 
In Practice
• Rather than trying to poison www.google.com...

• Instead try to poison a.google.com... 

And state that "www.google.com" is an authority 
And state that "www.google.com A 133.7.133.7"

• If you succeed, great!

• But if you fail, just try again with b.google.com!

• Turns "Race once per timeout" to "race until win"

• So now the attacker may still have to send lots of packets

• In the 10s of thousands

• The attacker can keep trying until success
37

Computer Science 161 Fall 2019 Weaver

Defending Against 
Kaminski: Up the Entropy
• Also randomize the UDP source port

• Adds 16 bits of entropy

• Observe that most DNS servers just copy the request
directly

• Rather than create a new reply

• So caMeLcase the NamE ranDomly

• Adds only a few bits of entropy however, but it does help

38

Computer Science 161 Fall 2019 Weaver

Defend Against 
Kaminski: Validate Glue
• Don't blindly accept glue records...

• Well, you have to accept them for the purposes of resolving a name

• But if you are going to cache the glue record...

• Either only use it for the context of a DNS lookup

• No more promotion

• Or explicitly validate it with another fetch

• Unbound implemented this, bind did not

• Largely a political decision:  

bind's developers are heavily committed to DNSSEC (next week's topic)
39

Computer Science 161 Fall 2019 Weaver

Oh, and Profiting from 
Rogue DNS
• Suppose you take over a lot of

home routers...

• How do you make money with it?

• Simple: Change their DNS
server settings

• Make it point to yours instead of the

ISPs

• Now redirect all advertising

• And instead serve up ads for "Vimax"

pills...
40

Computer Science 161 Fall 2019 Weaver

IP Packet Structure

41

4-bit

Version

4-bit

Header

Length

8-bit

Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification 3-bit

Flags 13-bit Fragment Offset

8-bit Time to

Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

Computer Science 161 Fall 2019 Weaver

IP Packet Structure

42

4-bit

Version

4-bit

Header

Length

8-bit

Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification 3-bit

Flags 13-bit Fragment Offset

8-bit Time to

Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

Specifies the length of the entire IP
packet: bytes in this header plus
bytes in the Payload

Computer Science 161 Fall 2019 Weaver

IP Packet Structure

43

4-bit

Version

4-bit

Header

Length

8-bit

Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification 3-bit

Flags 13-bit Fragment Offset

8-bit Time to

Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

Specifies how to interpret the start
of the Payload, which is the
header of a Transport Protocol
such as TCP or UDP

Computer Science 161 Fall 2019 Weaver

IP Packet Structure

44

4-bit

Version

4-bit

Header

Length

8-bit

Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification 3-bit

Flags 13-bit Fragment Offset

8-bit Time to

Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

Computer Science 161 Fall 2019 Weaver

IP Packet Structure

45

4-bit

Version

4-bit

Header

Length

8-bit

Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification 3-bit

Flags 13-bit Fragment Offset

8-bit Time to

Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

Computer Science 161 Fall 2019 Weaver

IP Packet Structure

46

4-bit

Version

4-bit

Header

Length

8-bit

Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification 3-bit

Flags 13-bit Fragment Offset

8-bit Time to

Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

Computer Science 161 Fall 2019 Weaver

IP Packet Header (Continued)

• Two IP addresses

• Source IP address (32 bits)

• Destination IP address (32 bits)

• Destination address

• Unique identifier/locator for the receiving host

• Allows each node to make forwarding decisions

• Source address

• Unique identifier/locator for the sending host

• Recipient can decide whether to accept packet

• Enables recipient to send a reply back to source

• Checksum is arithmetic, not CRC...

• To allow easily modification of the packet by the network

47

Computer Science 161 Fall 2019 Weaver

IP: “Best Effort ” Packet Delivery

• Routers inspect destination address, locate “next hop” in
forwarding table

• Address = ~unique identifier/locator for the receiving host

• Only provides a “I’ll give it a try” delivery service:

• Packets may be lost

• Packets may be corrupted (but that is 'assume drop' based on layer 2 error detection)

• Packets may be delivered out of order

48

source destination

IP network

Computer Science 161 Fall 2019 Weaver

IP Routing: 
Autonomous Systems
• Your system sends IP packets to the gateway...

• But what happens after that?

• Within a given network its routed internally

• But the key is the Internet is a network-of-networks

• Each "autonomous system" (AS) handles its own internal routing

• The AS knows the next AS to forward a packet to

• Primary protocol for communicating in between ASs is BGP:

• Each router announces what networks it can provide and the path onward

• Most precise route with the shortest path and no loops preferred

49

Computer Science 161 Fall 2019 Weaver

Packet Routing on the Internet: 
Border Gateway Protocol & Routing Tables

50

AS
1

AS
2

AS
3

AS
4

AS
5

AS
6

Sender

Recipient

{Recipient}

{AS6->Recipient}

{AS6->Recipient}

{AS5->AS6->Recipient}

{AS4->AS6->Recipient}

{AS4->AS6->Recipient}

Computer Science 161 Fall 2019 Weaver

Remarks

• This is a network of networks

• Its designed with failures in mind: 

Links can go down and the system will recover

• But it also generally trust-based

• A system can lie about what networks it can route to!

• Each hop decrements the TTL

• Prevents a "routing loop" from happening

• Routing can be asymmetric

• Since in practice networks may (slightly) override BGP, and other such

considerations
51

Computer Science 161 Fall 2019 Weaver

IP Spoofing 
And Autonomous Systems
• The edge-AS where a user connects should restrict packet

spoofing

• Sending a packet with a different sender IP address

• But about 25% of them don't...

• So a system can simply lie and say it comes from someplace else

• This enables blind-spoofing attacks

• Such as the Kaminski attack on DNS

• It also enables "reflected DOS attacks"

52

Computer Science 161 Fall 2019 Weaver

On-path Injection vs Off-path Spoofing

53

Host A

Host B
Host E

Host D

Host C

Router 1 Router 2
Router 3

Router 4

Router 5

Router 6 Router 7

Host A communicates with Host D

On-path

Off-path Off-path

Computer Science 161 Fall 2019 Weaver

Lying in BGP

54

AS
1

AS
2

AS
3

AS
4

AS
5

AS
6

Sender

Recipient

{AS6->Recipient}

{Recipient}

Computer Science 161 Fall 2019 Weaver

“Best Effort” is Lame! What to do?

• It’s the job of our Transport (layer 4) protocols to build data
delivery services that our apps need out of IP’s modest
layer-3 service

• #1 workhorse: TCP (Transmission Control Protocol)

• Service provided by TCP:

• Connection oriented (explicit set-up / tear-down)

• End hosts (processes) can have multiple concurrent long-lived communication

• Reliable, in-order, byte-stream delivery
• Robust detection & retransmission of lost data

55

Computer Science 161 Fall 2019 Weaver

TCP “Bytestream” Service

56

B
yte 0

B
yte 1

B
yte 2

B
yte 3

B
yte 0

B
yte 1

B
yte 2

B
yte 3

Process A on host H1

Process B
on host H2

B
yte 80

B
yte 80

Processes don’t ever see packet boundaries,
lost or corrupted packets, retransmissions, etc.

Computer Science 161 Fall 2019 Weaver

Bidirectional communication:

57

B
yte 0

B
yte 1

B
yte 2

B
yte 3

B
yte 0

B
yte 1

B
yte 2

B
yte 3

Process B on host H2

Process A
on host H1

B
yte 73

B
yte 73

There are two separate bytestreams, one in
each direction

Computer Science 161 Fall 2019 Weaver

TCP

58

Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Computer Science 161 Fall 2019 Weaver

TCP

59

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

These plus IP addresses define
a given connection

Computer Science 161 Fall 2019 Weaver

60

gateway

resolver
router

172.217.6.78

The Rest of
the Internet

4. Connect to google.com server

216.97.19.13
2

Suppose our browser used port 23144 for our connection,
and Google’s server used 443.

Then our connection will be fully specified by the single tuple
<216.97.19.132, 23144, 172.217.6.78, 443,TCP>

Computer Science 161 Fall 2019 Weaver

TCP

61

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Used to order data in the
connection: client program
receives data in order

Sequence number assigned to start
of byte stream is picked when
connection begins; doesn’t start at 0

Computer Science 161 Fall 2019 Weaver

TCP

62

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Used to say how much data
has been received

Acknowledgment
gives seq # just
beyond highest seq.
received in order.

If sender successfully
sends N bytestream
bytes starting at seq S
then “ack” for that will
be S+N.

Computer Science 161 Fall 2019 Weaver

Sequence Numbers

63

Host A

Host B

TCP Data

TCP Data

TCP
HDR

TCP
HDR

ISN (initial sequence number)

Sequence number
from A = 1st byte

of data

ACK sequence
number from B =
next expected

byte

Computer Science 161 Fall 2019 Weaver

TCP

64

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Flags have different meaning: 
 
SYN: Synchronize, 
used to initiate a connection

ACK: Acknowledge,

used to indicate
acknowledgement of data

FIN: Finish,

used to indicate no more data
will be sent (but can still receive
and acknowledge data)

RST: Reset,

used to terminate the
connection completely

Computer Science 161 Fall 2019 Weaver

TCP Conn. Setup & Data Exchange

65

Client (initiator) 
IP address 1.2.1.2, port 3344

Server 
IP address 9.8.7.6, port 80

SrcA=1.2.1.2, SrcP=3344, DstA=9.8.7.6, DstP=80, SYN, Seq = x

SrcA=9.8.7.6, SrcP=80, 

DstA=1.2.1.2, DstP=3344, SYN+ACK, Seq = y, Ack = x+1

SrcA=1.2.1.2, SrcP=3344, DstA=9.8.7.6, DstP=80, ACK, Seq = x+1, Ack = y+1SrcA=1.2.1.2, SrcP=3344, DstA=9.8.7.6, DstP=80,

ACK, Seq=x+1, Ack = y+1, Data=“GET /login.html

SrcA=9.8.7.6, SrcP=80, DstA=1.2.1.2, DstP=3344, 

ACK, Seq = y+1, Ack = x+16, Data=“200 OK … <html> …”

Computer Science 161 Fall 2019 Weaver

Abrupt Termination

• A sends a TCP packet with RESET (RST) flag to B

• E.g., because app. process on A crashed

• (Could instead be that B sends a RST to A)

• Assuming that the sequence numbers in the RST fit with what B expects, That’s It:

• B’s user-level process receives: ECONNRESET

• No further communication on connection is possible

66

SY
N

SY
N

 A
CK

A
CK

D
at

a

RS
TA

CK

time
A

B X

Computer Science 161 Fall 2019 Weaver

Disruption

• Normally, TCP finishes (“closes”) a connection by each side sending a
FIN control message

– Reliably delivered, since other side must ack

• But: if a TCP endpoint finds unable to continue (process dies; info
from other “peer” is inconsistent), it abruptly terminates by sending a
RST control message

– Unilateral
– Takes effect immediately (no ack needed)
– Only accepted by peer if has correct* sequence number

67

Computer Science 161 Fall 2019 Weaver

TCP Threat: Data Injection

• If attacker knows ports & sequence numbers (e.g., on-path attacker), attacker can inject data into
any TCP connection

• Receiver B is none the wiser!

• Termed TCP connection hijacking (or “session hijacking”)

• A general means to take over an already-established connection!

• We are toast if an attacker can see our TCP traffic!

• Because then they immediately know the port & sequence numbers

68

SY
N

SY
N

 A
CK

A
CK

D
at

a A
CK

time
A

B

N
as

ty
 D

at
a

N
as

ty
 D

at
a2

Computer Science 161 Fall 2019 Weaver

TCP Data Injection

69

Client (initiator) 
IP address 1.2.1.2, port 3344

Server 
IP address 9.8.7.6, port 80

SrcA=1.2.1.2, SrcP=3344, DstA=9.8.7.6, DstP=80,

ACK, Seq=x+1, Ack = y+1, Data=“GET /login.html

...

Attacker (AirPwn, QUANTUM, etc) 
IP address 6.6.6.6, port N/A

SrcA=9.8.7.6, SrcP=80, 
DstA=1.2.1.2, DstP=3344, 

ACK, Seq = y+1, Ack = x+16

Data=“200 OK … <poison> …”

Client
dutifully

processes
as server’s
response

Computer Science 161 Fall 2019 Weaver

TCP Data Injection

70

Client (initiator) 
IP address 1.2.1.2, port 3344

Server 
IP address 9.8.7.6, port 80

SrcA=1.2.1.2, SrcP=3344, DstA=9.8.7.6, DstP=80,

ACK, Seq=x+1, Ack = y+1, Data=“GET /login.html

...

Attacker 
IP address 6.6.6.6, port N/A

SrcA=9.8.7.6, SrcP=80, 
DstA=1.2.1.2, DstP=3344, 

ACK, Seq = y+1, Ack = x+16

Data=“200 OK … <poison> …”Client ignores since already

processed that part of
bytestream: the network
can duplicate packets 

so only pay attention to 
the first version in sequence

SrcA=9.8.7.6, SrcP=80, DstA=1.2.1.2, DstP=3344, 

ACK, Seq = y+1, Ack = x+16, Data=“200 OK … <html> …”

Computer Science 161 Fall 2019 Weaver

TCP Threat: Disruption

aka RST injection
• The attacker can also inject RST packets instead of

payloads

• TCP clients must respect RST packets and stop all communication

• Because its a real world error recovery mechanism

• So "just ignore RSTs don't work"

• Who uses this?

• China: The Great Firewall does this to TCP requests

• A long time ago: Comcast, to block BitTorrent uploads

• Some intrusion detection systems: To hopefully mitigate an attack in progress

71

Computer Science 161 Fall 2019 Weaver

TCP Threat: Blind Hijacking

• Is it possible for an off-path attacker to inject into a TCP
connection even if they can’t see our traffic?

• YES: if somehow they can infer or guess the port and
sequence numbers

72

Computer Science 161 Fall 2019 Weaver

TCP Threat: Blind Spoofing

• Is it possible for an off-path attacker to create a fake TCP
connection, even if they can’t see responses?

• YES: if somehow they can infer or guess the TCP initial
sequence numbers

• Why would an attacker want to do this?

• Perhaps to leverage a server’s trust of a given client as identified by its IP

address

• Perhaps to frame a given client so the attacker’s actions during the

connections can’t be traced back to the attacker

73

Computer Science 161 Fall 2019 Weaver

Blind Spoofing on TCP Handshake

74

Alleged Client (not actual) 
IP address 1.2.1.2, port N/A

Server 
IP address 9.8.7.6, port 80

Blind Attacker
SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6,

DstP=80, SYN, Seq = z

SrcA=9.8.7.6, SrcP=80, 

DstA=1.2.1.2, DstP=5566, SYN+ACK, Seq = y, Ack = z+1

Attacker’s goal:
SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6,
DstP=80, ACK, Seq = z+1, ACK = y+1

SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6,
DstP=80, ACK, Seq = z+1, ACK = y+1, Data

= “GET /transfer-money.html”

Computer Science 161 Fall 2019 Weaver

Blind Spoofing on TCP Handshake

75

Alleged Client (not actual) 
IP address 1.2.1.2, port NA

Server 
IP address 9.8.7.6, port 80

Blind Attacker
SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6,

DstP=80, SYN, Seq = z

SrcA=9.8.7.6, SrcP=80, 

DstA=1.2.1.2, DstP=5566, SYN+ACK, Seq = y, Ack = x+1

Small Note #1: if alleged client receives this, will
be confused ⇒ send a RST back to server …
… So attacker may need to hurry!
But firewalls may inadvertently stop this reply to
the alleged client so it never sends the RST 🤔

Computer Science 161 Fall 2019 Weaver

Blind Spoofing on TCP Handshake

76

Alleged Client (not actual) 
IP address 1.2.1.2, port NA

Server 
IP address 9.8.7.6, port 80

Blind Attacker
SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6,

DstP=80, SYN, Seq = z

SrcA=9.8.7.6, SrcP=80, 

DstA=1.2.1.2, DstP=5566, SYN+ACK, Seq = y, Ack = z+1

Big Note #2: attacker doesn’t
get to see this packet!

Computer Science 161 Fall 2019 Weaver

Blind Spoofing on TCP Handshake

77

Alleged Client (not actual) 
IP address 1.2.1.2, port N/A

Server 
IP address 9.8.7.6, port 80

Blind Attacker
SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6,

DstP=80, SYN, Seq = z

SrcA=9.8.7.6, SrcP=80, 

DstA=1.2.1.2, DstP=5566, SYN+ACK, Seq = y, Ack = z+1

So how can the attacker
figure out what value of y
to use for their ACK?

SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6,
DstP=80, ACK, Seq = z+1, ACK = y+1

SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6,
DstP=80, ACK, Seq = z+1, ACK = y+1, Data

= “GET /transfer-money.html”

Computer Science 161 Fall 2019 Weaver

Reminder: Establishing a TCP Connection

78

SYN

SYN+ACK

ACK

A B

Data
Data

Each host tells its Initial
Sequence Number

(ISN) to the other host.

(Spec says to pick based on
local clock)

Hmm, any way
for the attacker
to know this?

Sure – make a non-spoofed
connection first, and see what

server used for ISN y then!

How Do We Fix This?

Use a (Pseudo)-Random
ISN

Computer Science 161 Fall 2019 Weaver

Summary of TCP Security Issues

• An attacker who can observe your TCP connection can
manipulate it:

• Forcefully terminate by forging a RST packet

• Inject (spoof) data into either direction by forging data packets

• Works because they can include in their spoofed traffic the correct sequence

numbers (both directions) and TCP ports

• Remains a major threat today

79

Computer Science 161 Fall 2019 Weaver

Summary of TCP Security Issues

• An attacker who can observe your TCP connection can manipulate it:

• Forcefully terminate by forging a RST packet

• Inject (spoof) data into either direction by forging data packets

• Works because they can include in their spoofed traffic the correct sequence numbers (both

directions) and TCP ports

• Remains a major threat today

• If attacker could predict the ISN chosen by a server, could “blind spoof” a
connection to the server

• Makes it appear that host ABC has connected, and has sent data of the attacker’s choosing,

when in fact it hasn’t

• Undermines any security based on trusting ABC’s IP address

• Allows attacker to “frame” ABC or otherwise avoid detection

• Fixed (mostly) today by choosing random ISNs

80

Computer Science 161 Fall 2019 Weaver

But wasn't fixed completely...

• CVE-2016-5696

• "Off-Path TCP Exploits: Global Rate Limit Considered Dangerous" Usenix Security

2016

• https://www.usenix.org/conference/usenixsecurity16/technical-sessions/

presentation/cao

• Key idea:

• RFC 5961 added some global rate limits that acted as an information leak:

• Could determine if two clients were communicating on a given port

• Could determine if you could correctly guess the sequence #s for this communication

• Required a third host to probe this and at the same time spoof packets

• Once you get the sequence #s, you can then inject arbitrary content into the TCP
stream (d'oh)

81

