
Computer Science 161 Fall 2019 Weaver

Network 
Security 

7

1



Computer Science 161 Fall 2019 Weaver

News of the Day: 
Facebook/WhatsApp v NSO Group
• NSO Group serves the "lawful" hacking market

• Where "lawful" means "A government official signed our paycheck"


• They recently developed a nasty WhatsApp exploit

• "Unanswered call" -> Information leakage to break ALSR

• Then a heap-overflow to exploit


• And their customers used this to target >1400 targets

• Including >100 journalists, activists, etc...

• And government officials belonging to US ally governments
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Facebook Struck Back

• Filed a lawsuit in federal court

• Including publicizing a lot of NSO Group internal stuff in the initial filings


• Deleted all the NSO Group employees Facebook accounts

• Notified all targeted users

• Based on recorded metadata
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Transport-Level Denial-of-Service

• Recall TCP’s 3-way connection establishment handshake

–Goal: agree on initial sequence numbers
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Client (initiator)

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

Server creates state 
associated with 
connection here 
(buffers, timers, 
counters)Attacker doesn’t 

even need to 
send this ack
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Transport-Level Denial-of-Service

• Recall TCP’s 3-way connection establishment handshake

• Goal: agree on initial sequence numbers


• So a single SYN from an attacker suffices to force the server to spend 
some memory
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Server

Server creates state 
associated with 
connection here 
(buffers, timers, 
counters)Attacker doesn’t 

even need to 
send this ack



Computer Science 161 Fall 2019 Weaver

TCP SYN Flooding

• Attacker targets memory rather than network capacity

• Every (unique) SYN that the attacker sends burdens the target

• What should target do when it has no more memory for a new 

connection?

• No good answer!

• Refuse new connection?

• Legit new users can’t access service

• Evict old connections to make room?

• Legit old users get kicked off
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TCP SYN Flooding Defenses

• How can the target defend itself? 

• Approach #1: make sure they have tons of memory!

• How much is enough?

• Depends on resources attacker can bring to bear (threat model), which might 

be hard to know


• Back of the envelope: 

• If we need to hold 10kB for 1 minute: to exhaust 1GB, an attacker needs...

• 100k packets/minute, or a bit more than 1,000 packets per second
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TCP SYN Flooding Defenses

• Approach #2: identify bad actors & refuse their connections

• Hard because only way to identify them is based on IP address

• We can’t for example require them to send a password because doing so requires we 

have an established connection!

• For a public Internet service, who knows which addresses customers might 

come from?

• Plus: attacker can spoof addresses since they don’t need to complete TCP 

3-way handshake 


• Approach #3: don’t keep state!  (“SYN cookies”; only works 
for spoofed SYN flooding)
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SYN Flooding Defense: Idealized

Client (initiator)

SYN, SeqNum = x

S+A, SeqNum = y, Ack = x + 1, <State>

ACK, Ack = y + 1, <State>

Server

• Server: when SYN arrives, rather than keeping state locally, send 
it to the client …


• Client needs to return the state in order to established connection 
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Server only saves 
state here

Do not save state 
here; give to client
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SYN Flooding Defense: Idealized

Client (initiator)

SYN, SeqNum = x

S+A, SeqNum = y, Ack = x + 1, <State>

ACK, Ack = y + 1, <State>

Server

• Server: when SYN arrives, rather than keeping state locally, send 
it to the client …


• Client needs to return the state in order to established connection 
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Server only saves 
state here

Do not save state 
here; give to client

Problem: the world isn’t so ideal! 

TCP doesn’t include an easy way to 
add a new <State> field like this.


Is there any way to get the same 
functionality without having to 
change TCP clients?
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Practical Defense: SYN Cookies

Client (initiator)

SYN, SeqNum = x

SYN and ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

• Server: when SYN arrives, encode connection state entirely within  
SYN-ACK’s sequence # y

• y = encoding of necessary state, using server secret


• When ACK of SYN-ACK arrives, server only creates state if value of y from it agrees w/ 
secret
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Server only creates 
state here

Do not create 
state here

Instead, encode it here
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SYN Cookies: Discussion

• Illustrates general strategy: rather than holding state, encode it so that it is 
returned when needed


• For SYN cookies, attacker must complete 
3-way handshake in order to burden server

• Can’t use spoofed source addresses


• Note #1: strategy requires that you have enough bits to encode all the state

• (This is just barely the case for SYN cookies)

• You can think of a SYN cookie as a truncated MAC of the sender IP/port/sequence: 

And really, HMAC is the easiest way to do this!


• Note #2: if it’s expensive to generate or check the cookie, then it’s not a 
win
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And Once Again, HMAC to the rescue...

• HMAC is a great way to force others to store state...

• Create cookie:  

HMAC(k, data) -> 🍪

• Check cookie: 

HMAC(k, data) ?= 🍪


• Allow you to force others to store all the data you want that 
you can then verify later


• All you need to do is make sure that they know they need to send all the data 
back to you will the cookie...


• And you need the cookie to be big enough
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Application-Layer DoS

• Rather than exhausting network or memory resources, 
attacker can overwhelm a service’s processing capacity


• There are many ways to do so, often at little expense to 
attacker compared to target (asymmetry)
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Algorithmic complexity attacks

• Attacker can try to trigger worst-case complexity of algorithms / data 
structures


• Example: You have a hash table. 
Expected time: O(1).  Worst-case: O(n).


• Attacker picks inputs that cause hash collisions. 
Time per lookup: O(n). 
Total time to do n operations: O(n2).


• Solution?  Use algorithms with good worst-case running time.

• E.g., using b bits of HMAC ensures that P[hk(x)=hk(y)] = .5b, so hash collisions will be rare.

• If the attacker doesn't know the key that is
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Application-Layer DoS

• Defenses against such attacks?

• Approach #1: Only let legit users issue expensive requests

• Relies on being able to identify/authenticate them

• Note: that this itself might be expensive!


• Approach #2: Force legit users to “burn” cash

• This is what a captcha really is!


• Approach #3: massive over-provisioning ($$$)

• Or pay for someone else who massively over provisions for everyone: 

A content delivery network
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DoS Defense in General Terms

• Defending against program flaws requires:

• Careful design and coding/testing/review

• Consideration of behavior of defense mechanisms

• E.g. buffer overflow detector that when triggered halts execution to prevent code injection ⇒ 

denial-of-service


• Defending resources from exhaustion can be really hard.  
Requires:

• Isolation and scheduling mechanisms

• Keep adversary’s consumption from affecting others


• Reliable identification of different users

• Or just a ton of $$$$
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Controlling Networks … On The Cheap

• Motivation: How do you harden a set of systems against external attack?

• Key Observation:

• The more network services your machines run, the greater the risk


• Due to larger attack surface


• One approach: on each system, turn off unnecessary network services

• But you have to know all the services that are running

• And sometimes some trusted remote users still require access


• Plus key question of scaling

• What happens when you have to secure 100s/1000s of systems?

• Which may have different OSs, hardware & users …

• Which may in fact not all even be identified …
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Taming Management Complexity

• Possibly more scalable defense: Reduce risk by blocking in 
the network outsiders from having unwanted access your 
network services


• Interpose a firewall the traffic to/from the outside must traverse

• Chokepoint can cover thousands of hosts

• Where in everyday experience do we see such chokepoints?

20

Internet Internal 
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Selecting a Security Policy

• Firewall enforces an (access control) policy:

• Who is allowed to talk to whom, accessing what service?


• Distinguish between inbound & outbound connections

• Inbound: attempts by external users to connect to services on internal machines

• Outbound: internal users to external services

• Why?  Because fits with a common threat model.  There are thousands of internal users 

(and we’ve vetted them).  There are billions of outsiders.


• Conceptually simple access control policy:

• Permit inside users to connect to any service

• External users restricted: 

• Permit connections to services meant to be externally visible

• Deny connections to services not meant for external access
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How To Treat Traffic Not Mentioned in Policy?

• Default Allow: start off permitting external access to 
services


• Shut them off as problems recognized


• Default Deny: start off permitting just a few known, well-
secured services


• Add more when users complain (and mgt. approves)


• Pros & Cons?

• Flexibility vs. conservative design

• Flaws in Default Deny get noticed more quickly / less painfully

22

In general, use Default Deny
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A Dumb Policy: 
Deny All Inbound connections...
• The simplest packet filters are stateless

• They examine only individual packets to make a decision


• But even the simplest policy can be hard to implement

• Deny All Inbound is the default policy on your home connection


• Allow:

• Any outbound packet

• Any inbound packet that is a reply...  OOPS


• We can fake it for TCP with some ugly hacks

• Allow all outbound TCP

• Allow all inbound TCP that does not have both the SYN flag set and the ACK flag not set

• May still allow an attacker to play some interesting games


• We can't even fake this for UDP!
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Stateful Packet Filter

• Stateful packet filter is a router that checks each packet 
against security rules and decides to forward or drop it


• Firewall keeps track of all connections (inbound/outbound)

• Each rule specifies which connections are allowed/denied 

(access control policy)

• A packet is forwarded if it is part of an allowed connection

24

Internet Internal 
Network
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Example Rule

• allow tcp connection 4.5.5.4:* -> 3.1.1.2:80 
• Firewall should permit TCP connection that’s:

• Initiated by host with Internet address 4.5.5.4 and

• Connecting to port 80 of host with IP address 3.1.1.2


• Firewall should permit any packet associated with 
this connection


• Thus, firewall keeps a table of (allowed) active connections.  When firewall 
sees a packet, it checks whether it is part of one of those active connections. 
If yes, forward it; if no, check to see if rule should create a new allowed 
connection

25



Computer Science 161 Fall 2019 Weaver

Example Rule

• allow tcp connection *:*/int -> 3.1.1.2:80/ext 
• Firewall should permit TCP connection that’s:

• Initiated by host with any internal host and

• Connecting to port 80 of host with IP address 3.1.1.2 on external Internet


• Firewall should permit any packet associated with 
this connection


• The /int indicates the network interface.

• This is "Allow all outgoing web requests"

26



Computer Science 161 Fall 2019 Weaver

Example Ruleset

• allow tcp connection *:*/int -> *:*/ext 

• allow tcp connection *:*/ext -> 1.2.2.3:80/int 
• Firewall should permit outbound TCP connections 

(i.e., those that are initiated by internal hosts)

• Firewall should permit inbound TCP connection to our public webserver at IP address 

1.2.2.3
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Stateful Filtering

• Suppose you want to allow inbound connection to a FTP 
server, but block any attempts to login as “root”.  How 
would you build a stateful packet filter to do that? In 
particular, what state would it keep, for each connection?
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State Kept

• No state – just drop any packet with root in them


• Is it a FTP connection?

• Where in FTP state (e.g. command, what command)

• Src ip addr, dst ip addr, src port, dst port

• Inbound/outbound connection

• Keep piece of login command until it’s completed – only 

first 5 bytes of username
29
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Beware!

• Sender might be malicious and trying to sneak through 
firewall


• “root” might span packet boundaries

30
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Beware!

• Packets might be re-ordered
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Beware!
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Other Kinds of Firewalls

• Application-level firewall

– Firewall acts as a proxy.  TCP connection from client to firewall, which 

then makes a second TCP connection from firewall to server.

– Only modest benefits over stateful packet filter.
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Secure External Access to Inside Machines

• Often need to provide secure remote access to a network protected by a 
firewall

• Remote access, telecommuting, branch offices, …


• Create secure channel (Virtual Private Network, or VPN) to tunnel traffic from 
outside host/network to inside network

• Provides Authentication, Confidentiality, Integrity

• However, also raises perimeter issues

•     (Try it yourself at http://www.net.berkeley.edu/vpn/)
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Why Have Firewalls Been Successful?

• Central control – easy administration and update

• Single point of control: update one config to change security policies

• Potentially allows rapid response


• Easy to deploy – transparent to end users

• Easy incremental/total deployment to protect 1000’s


• Addresses an important problem

• Security vulnerabilities in network services are rampant

• Easier to use firewall than to directly secure code …
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Firewall Disadvantages

• Functionality loss – less connectivity, less risk

• May reduce network’s usefulness

• Some applications don’t work with firewalls

• Two peer-to-peer users behind different firewalls


• The malicious insider problem

• Assume insiders are trusted

• Malicious insider (or anyone gaining control of internal machine) can wreak havoc


• Firewalls establish a security perimeter

• Like Eskimo Pies: “hard crunchy exterior, soft creamy center”

• Threat from travelers with laptops, cell phones, …
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Pivoting...

• Thus the goal of the attacker is to "pivot" through the 
system

• Start running on a single victim system

• EG, using a channel that goes from the victim to the attacker's server over port 443: an 

encrypted web connection


• From there, you can now exploit internal systems directly

• Bypassing the primary firewall


• That is the problem: A single breach of the perimeter by an 
attacker and you can no longer make any assertions about 
subsequent internal state
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Takeaways on Firewalls

• Firewalls: Reference monitors and access control all over 
again, but at the network level


• Attack surface reduction

• Centralized control
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And the NAT: 
Network Address Translation...
• An ISP might give us just a single IPv4 address

• As they are expensive...

• But you do get 264 IPv6 addresses...


• So your "home gateway/home router" implements a NAT

• Outbount request?  Create an entry into a table: 

<in-IP,in-Port,Out-IP,Out-Port,Proto> -> ExteriorPort


• Now on outbound packets

• Replace in-IP and in-Port with my IP and ExteriorPort


• And on inbound packets

• Replace my IP and ExteriorPort with in-IP and in-Port


• By default it is a "deny all incoming" firewall...

• Except these days, your system can ask for a reservation to allow inbound connections
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A Warning For Wednesday: 
I'm Giving Unfiltered DNSSEC
• Why?

• Because it is a well thought through cryptographic protocol designed to solve a real 

world data integrity problem

• It is a real world PKI with some very unique trust properties:

• A constrained path of trust along established business relationships.


• It is important to appreciate the real world of what it takes to build a secure system

• I've worked with it for far too much for my own sanity...

• And I'm a cruel bastard


• Note: DNSSEC is the cutoff point for MT2: 
Everything up to DNSSEC is fair game... 
DNSSEC won't hit until the final
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requesting host
xyz.poly.edu www.mit.edu

root DNS server (‘.’) 
parent for .edu

local DNS server 
(resolver)

dns.poly.edu

1

2
3

4

5

6
authoritative DNS server

ns.mit.edu 
child domain

78

TLD DNS server (‘.edu’) 
parent for mit.edu

Hypothetical: 
Securing DNS Using SSL/TLS
Host at xyz.poly.edu wants  

IP address for www.mit.edu

41

Idea: connections {1,8}, 
{2,3}, {4,5} and {6,7} all 
run over SSL / TLS
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But This Doesn't Work

• TLS provides channel integrity, but we need data integrity

• TLS in this scheme is not end to end 

• In particular, the recursive resolver is a known adversary:

• "NXDOMAIN wildcarding": a "helpful" page when you give a typo

• Malicious MitM of targeted schemes for profit


• TLS in this scheme is painfully slow:

• DNS lookups are 1 RTT, this is 3 RTTs!


• And confidentiality is of little benefit:

• We use DNS to contact hosts: 

Keeping the DNS secret doesn't actually disguise who you talk to!
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DNS security: 
If the Attacker sees the traffic...
• All bets are off:

• DNS offers NO protection against an on-path or in-path adversary

• Attacker sees the request, sends the reply, and the reply is accepted!


• The recursive resolver is the most common in-path 
adversary!


• It is implicitly trusted

• Yet often abuses the trust


• And this scheme keeps the resolver as the in-path 
adversary
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So Instead Let's Make 
DNS a PKI and records certificates
• www.berkeley.edu is already trusting the DNS authorities for 
berkeley.edu, .edu, and . (the root)

• Since www.berkeley.edu is in bailiwick for all these servers and you end up 

having to contact all of them to get an answer.


• So let's start signing things:

• . will sign .edu's key

• .edu will sign Berkeley's key

• Berkeley's key will sign the record 


• DNSSEC: DNS Security Extensions

• A heirarchical, distributed trust system to validate the mappings of names to values
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