Use Signal?! ?Use Tor?

Weaver

American Oversight @weareoversight

NEW: Shortly after North Korea tested a missile, Nikki Haley, former ambassador to the United Nations, sent classified information over an unclassified email system — according to records we obtained via FOIA litigation.

Why? She forgot her password. thedailybeast.com/nikkihaley-us...

		Haley, Nikki (USUN New York)		
Official UNCLASSIFIED		Anares Servit Ter Subject	Glacinam, David M. Tuanslay, July Od. 2017 (EOA IMA Haley, Aldel Garmer, Jon St. Chaney Adams RE Tirson Japan	PART T APRIL C. L. 400
Yeener Classon, Cavid M Senet Transit, Nay Ge, 2017 1:54 PM Der Holes, Nakl, Lemer, Jon 5 Subjech III: (2019)		Thack you, Areh. Hiday. Any beard the same from two loganese crossing at so is show to used out the formal sugnet for the open meeting is the full Council. Following that we can used out the press values on it. Will hop encryone present.		
unb. Haley,		CMO		
Will let the team know now and will keep you posted.		Official UNCLASSIFIED		
ONG Official UNCLASSIFIED		Frears: Holey, Mild Senti: Turndin, July 0 Tex Lorren, Jun 5; Dis Subject: From Jopan	14, 2017 5142 PM Kosm, David M, Olaray Adams	

 \sim

Signal and Tor

- Signal is a messenger protocol and implementation
 - Signal (the company) is a 501(c)3 nonprofit
 - The protocol is also used by WhatsApp, Facebook Messenger, etc...
- Tor is an anonymity tool
 - Designed to provide anonymous but real-time network connectivity in the face of an aggressive but local adversary
- Common (bad) information security advice is "Use Signal, Use Tor"
 - In reality, Signal is a great protocol, but some security compromises are annoying in the implementation, so for most, WhatsApp is about as good
 - While Tor is often not just a placebo but *poison*!

End-To-End Messengers

- We love *end to end* cryptographic protocols...
 - After all, we just saw why we might want them
- We love *forward secrecy*...
- After all, we just saw why we want things to stay secret even if our keys are compromised
- Forward secrecy is "easy" for online protocols
 - Just make sure to do a DHE/ECDHE key exchange
- Forward secrecy is *much more annoying* for an offline protocol
 - Alice wants to share data with Bob, but Bob is not online
 - Like in project 2...
 - Or any messenger system!

Signal Requirements For Key Agreement

- Three parties: Alice, Bob, and a messenger server
 - The messenger server is like the file store in project 2, an *untrusted* entity
 - A separate mechanism is used to provide key transparency
- Bob is offline:
 - He has prearranged data stored on the messenger server
- Alice and Bob want to create an ephemeral (DH) key...
 - To use for then encrypting messages
- They need *mutual authentication*
 - Assuming Alice and Bob have the correct public keys, only Alice and Bob could have agreed on a key
- They also need *deniability*
 - Alice or Bob can't create a record *proving* the other side participated in creating the key: So no "Alice just signs her DH..." design

Extended Triple Diffie-Hellman

- Key idea:
 - Lets use multiple Diffie-Hellman exchanges combined into one
 - Some to perform mutual authentication
 - Some to generate an ephemeral key
- They use elliptic curves, but the design would be the same for conventional DH, so we will use the former
 - We will use DH(A,B) as DH(g^a,g^b) where we know a but not b.
 - Also have Sign(K,M) for signing and KDF(KM) which derives a bunch of session keys for a hash-based key derivation function

Lots of Keys!

Computer Science 161 Fall 2019

- Alice:
 - *IK_A*: Alice's identity key: for both DH and signatures
 - **EK**_A: Alice's ephemeral key: Created and discarded.
- Bob:
 - *IK_B*: Bob's identity key, long lived
 - **SPK**_B: Bob's signed rekey, rotates ~weekly/monthly
 - Has corresponding signature Sign(IK_b, SPK_b)
 - **OPK**_B: Bob's one time use keys (One Time Prekey)
 - Can run out, but designed to increase security when available

Before We Start: Bob to Server, Server to Alice

- Computer Science 161 Fall 2019
 - Bob uploads:
 - IK_B , SPK_B , $Sign(IK_B, SPK_B)$, $\{OPK_B^1, OPK_B^2, OPK_B^3 ...\}$
 - Now when Alice wants to talk to Bob...
 - Gets from the server:
 - IK_B, SPK_B, Sign(IK_B, SPK_B), OPK_B?
 - Told which OPK it is or "There are no OPKs left"
 - **OPKs** are designed to prevent replay attacks
 - This is now the input into Alice's DH calculations

Alice now does a lot of DH...

Computer Science 161 Fall 2019

- $DH1 = DK(IK_A, SPK_B)$
 - Acts as authentication for Alice when Bob does the same
- *DH2* = *DK(EK_A, IK_B)*
 - Forces Bob to do mutual authentication
- DH3 = DK(EK_A, SPK_B)
 - Adds in ephemeral *EK_A* to short lived *SPK_B*
- $DH4 = DK(EK_A, OPK_B)$
 - Adds in one-time used **OPK**_B, if available
- SK = HKDF(DH1 || DH2 || DH3 || DH4)
 - Skip DH4 if no one time pre-keys are available
- Now discard the private part of EKA and the intermediate DH calculations

9

Now Alice Sends To Bob

Computer Science 161 Fall 2019

- IK_A, EK_A, which OPK used (if any), and E(SK, M, IK_A || IK_B)
 - Using an AEAD encryption mode:
 Authenticated Encryption with Additional Data modes allow additional data to be protected by the MAC but sent in the clear
- Bob can do the same DH calculations to generate SK
 - If it fails to verify the AEAD data abort

Key Transparency

Computer Science 161 Fall 2019

- For now, Alice and Bob are trusting the server to report *IK_A* and *IK_B* correctly
 - If the server lies, ¥
- Fortunately there is an answer:
 If Alice and Bob are *ever* together:
 - One person's phone displays H(IK_A || IK_B) as a QR Code
 - Other person's phone verifies that it is the same
- Plus the voice channel...
 - Display "Two Words" on screen:
 F(H(IK_A || IK_B || SK))
 - Assumption is a MitM attacker can't fake a voice conversation quickly enough, so if each person says one of the words...

Considerations

Computer Science 161 Fall 2019

- Authentication requires the out-of-channel methods
 - Otherwise no guarantees
- Replay attacks
 - Only if no OPK is available: Can be potentially bad
- Deniability
 - No cryptographic proofs available as to the sender/receiver!

And Then Ratchets...

Computer Science 161 Fall 2019

- A "ratchet" is a one-way function for message keys
 - *Ratchet(K_i)* -> *K_{i+1}*, *MK_i*
 - But can't take K_{i+1} and MK_i to find K_i
- A symmetric key ratchet is easy
 - We've seen these already: Any PRNG with rollback resistance
 - Can do it slightly more efficiently with HMAC: *HMAK(K_i, 0x01) -> MK_i HMAC(K_i, 0x02) -> K_{i+1}*
- Its OK to keep around the intermediate session keys
 - Thanks to HMAC we can't go backwards with them anyway: Needed for out of order messages

Signal adds in DH ratchets too...

Computer Science 161 Fall 2019

- So for a few messages in a chain you use a symmetric key ratchet...
 - You gain forward secrecy by discarding the old internal state
- But occasionally you rekey with an additional DH
 - Used to add into the ratchet internal state

The Protocol is Great... BUT!

Computer Science 161 Fall 2019

- The app itself does some ehh thing in the usability/security tradeoff...
 - *No mechanism to back-up messages*! If your phone is toast, your messages are gone!
 - No mechanism to migrate to a new phone!
 If you upgrade to a new phone, your messages are gone!
- This is where WhatsApp has a huge competitive advantage
 - They allow backup of messages
 - (perhaps a screwup) Whether or not you "allow backups", it is marked as "OK to back-up" in the phone's memory

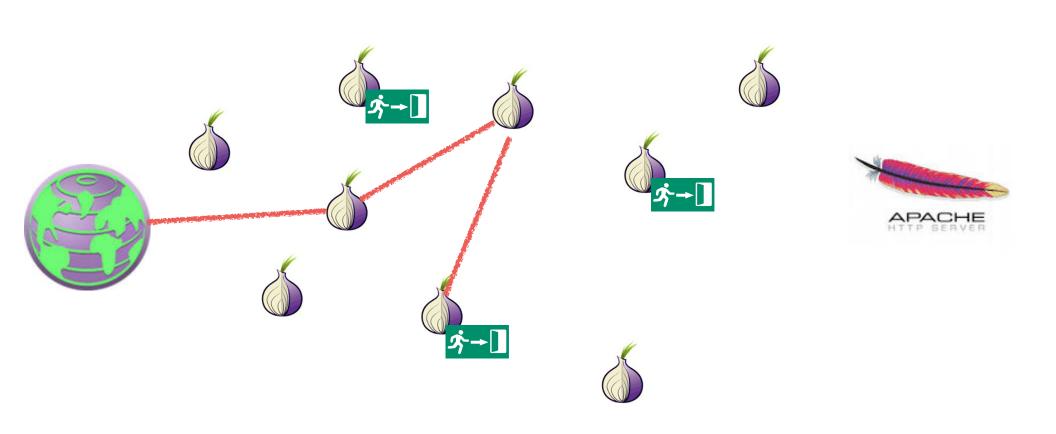
Tor: The Onion Router Anonymous Websurfing

- Tor actually encompasses many different components
- The Tor network:
 - Provides a means for anonymous Internet connections with low(ish) latency by relaying connections through multiple Onion Router systems
- The Tor Browser bundle:
 - A copy of FireFox extended release with privacy optimizations, configured to only use the Tor network
- Tor Hidden Services:
 - Services only reachable though the Tor network
- Tor bridges with pluggable transports:
 - Systems to reach the Tor network using encapsulation to evade censorship
- Tor provides three separate capabilities in one package:
 - Client anonymity, censorship resistance, server anonymity

The Tor Threat Model:

Anonymity of content against *local* adversaries

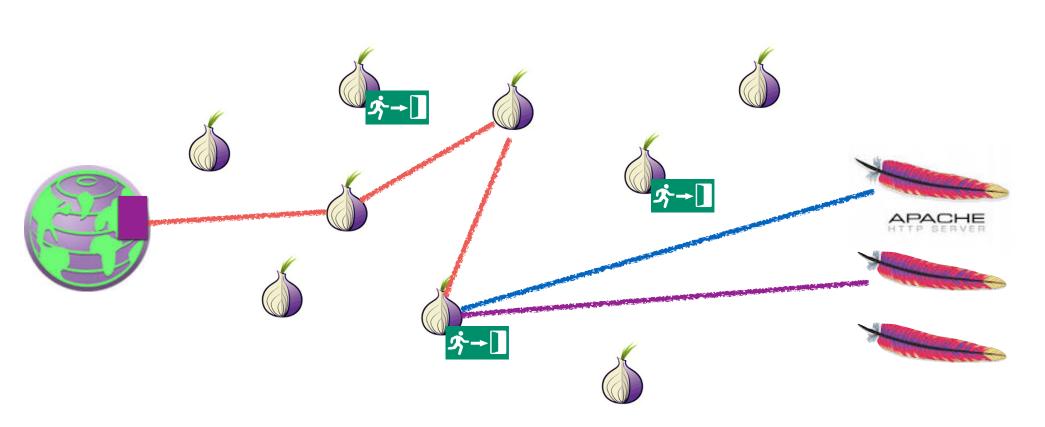
- The goal is to enable users to connect to other systems "anonymously" but with low latency
- The remote system should have no way of knowing the IP address originating traffic
- The local network should have no way of knowing the remote IP address the local user is contacting
- Important what is excluded: The *global* adversary
 - Tor does not even attempt to counter someone who can see *all* network traffic: It is probably *impossible* to do so and be low latency & efficient


The High Level Approach: Onion Routing

Computer Science 161 Fall 2019

- The Tor network consists of thousands of independent Tor nodes, or "Onion Routers"
- Each node has a distinct public key and communicates with other nodes over TLS connections
- A Tor circuit encrypts the data in a series of layers
 - Each hop away from the client removes a layer of encryption
 - Each hop towards the client adds a layer of encryption
- During circuit establishment, the client establishes a session key with the first hop...
 - And then with the second hop through the first hop
- The client has a *global* view of the Tor Network:
 The directory servers provide a list of all Tor relays and their public keys

Tor Routing In Action


Computer Science 161 Fall 2019

Tor Routing In Action

Computer Science 161 Fall 2019

Weaver

20

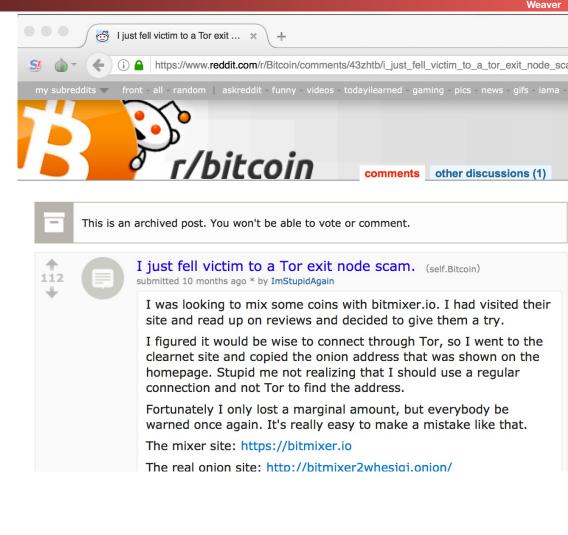
Creating the Circuit Layers...

Computer Science 161 Fall 2019

- The client starts out by using an authenticated DHE key exchange with the first node...
 - So conceptually like DHE in TLS: OR1 creates g^a, signs it with public key in the directory, sends to client Client creates g^b, sends it to OR1
 - Creating a session key to talk to OR1
 - This first hop is commonly referred to as the "guard node"
- It then tells OR1 to extend this circuit to OR2
 - Through that, creating a session key for the client to talk to OR2 that OR1 does not know
 - And OR2 doesn't know what the client is, just that it is somebody talking to OR1 requesting to
 extend the connection...
- It then tells OR2 to extend to OR3...
 - And OR1 won't know where the client is extending the circuit to, only OR2 will

Unwrapping the Onion

- Now the client sends some data...
 - E(K_{or1},E(K_{or2},E(K_{or3}, Data)))
- OR1 decrypts it and passes on to OR2
 - E(K_{or2}, E(K_{or3}, Data))
- OR2 then passes it on...
- Generally go through at least 3 hops...
- Why 3? So that OR1 can't call up OR2 and link everything trivially
- Messages are a fixed-sized payload


The Tor Browser...

Computer Science 161 Fall 2019

- Surfing "anonymously" doesn't simply depend on hiding your connection...
- But also configuring the browser to make sure it resists tracking
 - No persistent cookies or other data stores
 - No deviations from other people running the same browser
- Anonymity only works in a crowd...
 - So it really tries to make it all the same
- But by default it makes it easy to say "this person is using Tor"

But You Are Relying On Honest Exit Nodes...

- The exit node, where your traffic goes to the general Internet, is a man-in-themiddle...
 - Who can see and modify all nonencrypted traffic
 - The exit node also does the DNS lookups
- Exit nodes have not always been honest...

Anonymity Invites Abuse... (Stolen from Penny Arcade)

Computer Science 161 Fall 2019

This Makes Using Tor Browser Painful...

And Also Makes Running Exit Nodes Painful...

- If you want to receive abuse complaints...
 - Run a Tor Exit Node
- Assuming your ISP even allows it...
 - Since they don't like complaints either
- Serves as a large limit on Tor in practice:
 - Internal bandwidth is plentiful, but exit node bandwidth is restricted
- Know a colleague who ran an exit node for research...
 - And got a *visit from the FBI*!

One Example of Abuse: The Harvard Bomb Threat...

- On December 16th, 2013, a Harvard student didn't want to take his final in "Politics of American Education"...
- So he emailed a bomb threat using Guerrilla Mail
- But he was "smart" and used Tor and Tor Browser to access Guerrilla Mail
- Proved easy to track
 - "Hmm, this bomb threat was sent through Tor..."
 - "So who was using Tor on the Harvard campus..." (look in Netflow logs..)
 - "So who is this person..." (look in authentication logs)
 - "Hey FBI agent, wanna go knock on this guy's door?!"
- There is no magic Operational Security (OPSEC) sauce...
 - And again, anonymity only works if there is a crowd

Censorship Resistance: Pluggable Transports

Computer Science 161 Fall 2019

- Tor is really used by separate communities
 - Anonymity types who want anonymity in their communication
 - Censorship-resistant types who want to communicate despite government action
 - The price for "free" censorship evasion is that your traffic acts to hide other anonymous users
- Vanilla Tor fails the latter completely
- So there is a framework to deploy bridges that encapsulate Tor over some other protocol
 - So if you are in a hostile network...
 - Lots of these, e.g. OBS3 (Obfuscating Protocol 3), OBS4, Meek...

OBS3 Blocking: China Style

- Weaver
- Its pretty easy to recognize something is *probably* the Tor obs3 obfuscation protocol
 - But there may be false positives...
 - And if you are scanning all internet traffic in China the base rate problem is going to get you
- So they scan all Internet traffic looking for obs3...
 - And then try to connect to any server that looks like obs3...
 - Do a handshake and if successful...
- If it is verified as an obs3 proxy...
 - China then blocks that IP/port for 24 hours

Meek: Collateral Freedom

Computer Science 161 Fall 2019

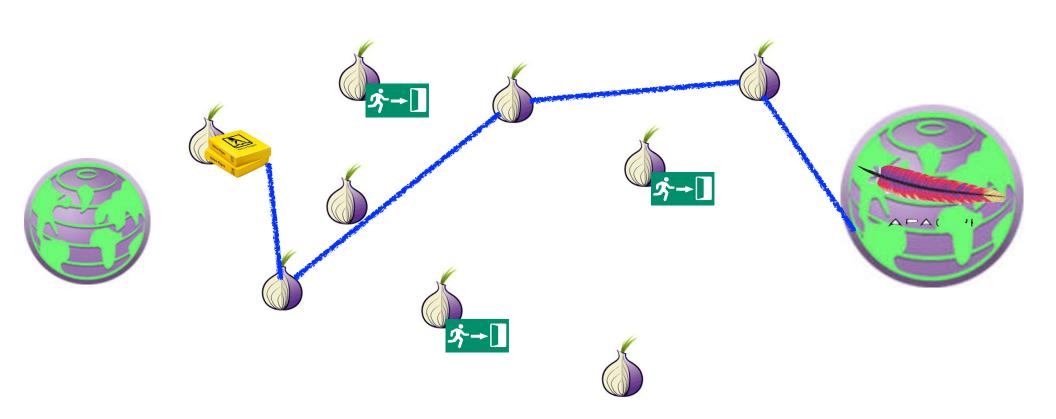
- Meek is another pluggable transport
 - It uses Google App engine and other cloud services
- Does a TLS connection to the cloud service
- And then encapsulates the Tor frames in requests laundered through the cloud service
- Goal is "Too important to block"
- The TLS handshake is to a legitimate, should not be blocked service
- And traffic analysis to tell the difference between Meek and the TLS service is going to be hard/have false positives

The End Of Collateral Freedom...

Computer Science 161 Fall 2019

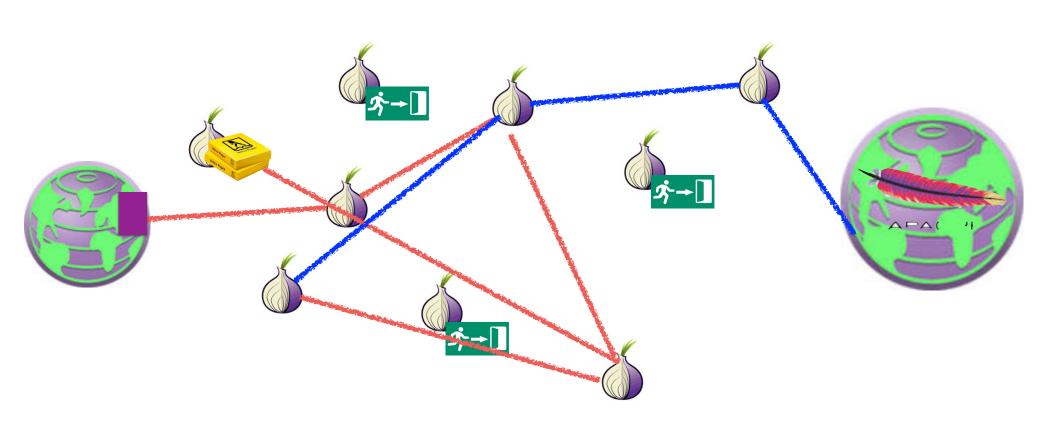
- Meek relied on "Domain fronting"
 - A "bug"/"feature" of TLS/HTTPS: You tell TLS what host you want to talk to You tell the HTTP server what host you want to talk to...
- So you tell TLS one thing
 - Which the censor can see
- And the web server something else
 - Because its a Google server, or a Cloudflare CDN server or... Which supports a large number of different hosts
- Recently all the major CDNs stopped supporting it
 - After all, it *is* a bug!

32

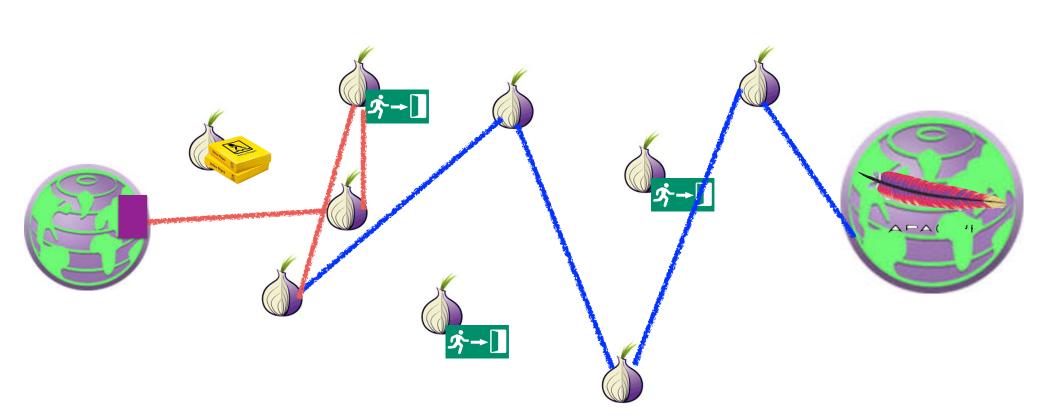

Tor Browser is also used to access Tor Hidden Services aka .onion sites

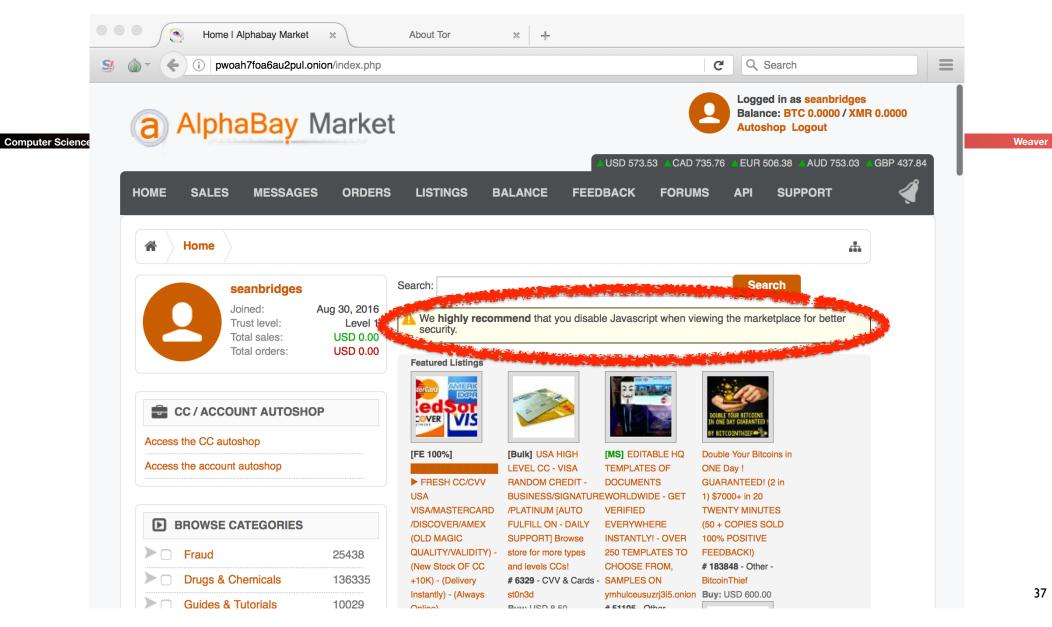
Computer Science 161 Fall 2019

- Services that only exist in the Tor network
 - So the service, not just the client, has possible anonymity protection
 - The "Dark Web"
- A hash of the hidden service's public key
 - http://pwoah7foa6au2pul.onion
 - AlphaBay, one of many dark markets
 - https://facebookcorewwwi.onion
 - In this case, Facebook spent a lot of CPU time to create something distinctive
- Using this key hash, can query to set up a circuit to create a hidden service at a rendezvous point
 - And because it is the hash of the key we have end-to-end security


Tor Hidden Service: Setting Up Introduction Point

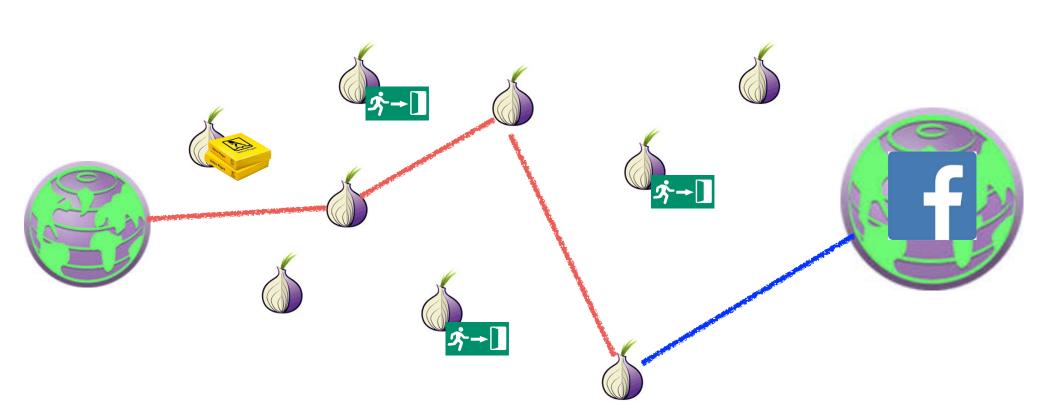
Computer Science 161 Fall 2019


Tor Hidden Service: Query for Introduction, Arrange Rendevous


Computer Science 161 Fall 2019

Tor Hidden Service: Rendevous and Data

Computer Science 161 Fall 2019



Remarks...

- Want to keep your guard node constant for a long period of time...
 - Since the creation of new circuits is far easier to notice than any other activity
- Want to use a different node for the rendezvous point and introduction
 - Don't want the rendezvous point to know who you are connecting to
- These are *slow!*
 - Going through 6+ hops in the Tor network!

Non-Hidden Tor Hidden Service: Connect Directly to Rendezvous

Computer Science 161 Fall 2019

Weaver

Non-Hidden Hidden Services Improve Performance

- No longer rely on exit nodes being honest
- No longer rely on exit node bandwidth either
- Reduces the number of hops to be the same as a not hidden service
- Result: Huge performance win!
 - Not slow like a hidden service
 - Not limited by exit node bandwidth
- Any *legitimate* site offering a Tor hidden service should use this technique
 - Since legitimate sites don't need to hide!

Real use for *true hidden* hidden services

Computer Science 161 Fall 2019

- "Non-arbitrageable criminal activity"
 - Some crime which is universally attacked and targeted
 - So can't use "bulletproof hosting", CDNs like CloudFlare, or suitable "foreign" machine rooms:

And since CloudFlare will service the anti-Semitic shitheads like gab.ai and took forever to get rid of the actual nazis of Stormfront and the murderous shits of 8chan...

- Dark Markets
 - Marketplaces based on Bitcoin or other alternate currency
- Cybercrime Forums
 - Hoping to protect users/administrators from the fate of earlier markets
- Child Exploitation

The Dark Market Concept

- Four innovations:
- A censorship-resistant payment (Bitcoin)
 - Needed because illegal goods are not supported by Paypal etc
 - Bitcoin/cryptocurrency is the only game in town for US/Western Europe after the Feds smacked down Liberty Reserve and eGold
- An eBay-style ratings system with mandatory feedback
 - Vendors gain positive reputation through continued transactions
- An escrow service to handle disputes
 - Result is the user (should) only need to trust the market, not the vendors
- Accessable *only* as a Tor hidden service
 - Hiding the market from law enforcement

The Dark Markets: History

- All pretty much follow the template of the original "Silk Road"
 - Founded in 2011, Ross Ulbricht busted in October 2013
- The original Silk Road actually (mostly) lived up to its libertarian ideals
- Including the libertarian ideal that if someone rips you off you should be able to call up the Hell's Angels and put a hit on them
 - And the libertarian idea if someone is foolish enough to THINK you are a member of the Hell's Angels you can rip them off for a large fortune for a fake hit
- Since then, markets come and go...
 - And even information about them is harder: Reddit no longer supports them, deepdotweb got busted... Leaving "Dread": Reddit as a Tor Hidden Service

The Dark Markets: Not So Big, and **Not Growing!**

- Weaver
- Kyle Soska and Nicolas Christin of CMU have crawled the dark markets for years
 - These markets *deliberately* leak sales rate information from mandatory reviews
- So simply crawl the markets, see the prices, see the volume, voila...
- Takeaways:
 - Market size has been relatively steady for years, about \$300-500k a day sales
 - Latest peak got close to \$1M a day
 - Dominated by Pot, MDMA, and stimulants, with secondary significance with opioids and psychedelics
 - A few sellers and a few markets dominate the revenue: A fair bit of "Winner take all"
 - But knock down any "winner" and another one takes its place

The Scams...

- You need a reputation for honesty to be a good crook
 - But you can burn that reputation for short-term profit
- The "Exit Scam" (e.g. pioneered by Tony76 on Silk Road)
 - Built up a positive reputation
 - Then have a big 4/20 sale
 - Require buyers to "Finalize Early"
 - Bypass escrow because of "problems"
 - Take the money and run!
- Can also do this on an entire market basis
 - The "Sheep Marketplace" being the most famous

And then the Child Exploitation types

Computer Science 161 Fall 2019

- This is why I'm quite happy to see Tor Hidden Services burn!!!
 - Because these do represent a serious problem: The success against "PlayPen" shows just how major these are
- A far bigger systemic problem than the dark markets:
 - Dark markets are low volume, and not getting worse
 - Plus the libertarian attitude of "drug users are mostly harming themselves, its the drug-associated crime that is the problem"
 - No indication of any *successful* murder resulting from dark market activity
 - But these are harming others
- They are also harming Tor:

Tor itself is a very valuable tool for many legitimate uses, but the presence of the child exploitation sites on hidden services is a stain on Tor itself

Deanonymizing Hidden Services: Hacking...

Computer Science 161 Fall 2019

Weaver

- Most dark-net services are not very well run...
 - Either common off-the-shelf drek or custom drek
- And most have now learned don't ask questions on StackOverflow
 - Here's looking at you, frosty...
- So they don't have a great deal of IT support services
 - A few hardening guides but nothing really robust

Onionscan...

Computer Science 161 Fall 2019

- A tool written by Sarah Jamie Lewis
 - Available at https://github.com/s-rah/onionscan
- Idea is to look for very common weaknesses in Tor Hidden services
 - Default apache information screens
 - Web fingerprints
 - I believe a future version will check for common ssh keys elsewhere on the Internet
- Its really "dual use"
 - .onion site operators should use to make sure they aren't making rookie mistakes
 - Those investigation .onion sites should use to see if the target site made a rookie mistake!

48

Weave