
Computer Science 161 Fall 2019 Weaver

Dragonfly &
Malcode

1

Computer Science 161 Fall 2019 Weaver

News of The Day...

2

Computer Science 161 Fall 2019 Weaver

Dragonfly…

• WPA2-PSK sucks…

• An eavesdropper gains enough information for an offline attack on the pre-shared

password

• What we really want is “Simultaneous Authentication of Equals”

• Alice and Bob share the same password PW

• Alice and Bob can negotiate a shared public-key based secret only if both know PW

• If Alice or Bob doesn’t know PW, then they don’t learn anything about PW unless

they successfully guessed PW during the protocol

• Both Alice and Bob know the password in the clear

• Enter Dragonfly (RFC 7664)

• Has both EC and conventional DH based variants

3

Computer Science 161 Fall 2019 Weaver

Last part is important: 
Turns offline into online-only attacks
• If Alice or Bob doesn’t know PW, then they don’t learn anything about

PW unless they successfully guessed PW during the protocol

• Model is we have a set of possible passwords, all equally likely, which one?

• Off-line attacks are death:

• Attacker can try as many passwords as they want in parallel

• On-line attacks are much more limited:

• Attacker can only try one at a time...

• And can rate-limit the attacker

• iOS passcode design is strongly set up to force online-only attacks: 
Even if you compromise the secure enclave, you have to try each
password sequentially

4

Computer Science 161 Fall 2019 Weaver

DH-based Dragonfly

• Public parameters:

• A prime p

• A generator over this G

• A (smaller) prime q
• Size of the group defined by G and q is a large prime divisor of (p-1)/2

• A selected generator g is valid if g < p and gq mod p = 1

• Same idea as with DSA: We can use a smaller specialized group and be sending smaller data elements

around

• Identifiers for Alice and Bob

• EG, MAC addresses, with an ordering function

• Key idea:

• Select a random generator g, called P (or PE == Password Element) 

based on H(IDa || IDb || PW)

• Hmm, I wonder where Nick got that idea for the WhyFi question? 🤔

5

Computer Science 161 Fall 2019 Weaver

Actually creating PE

 found = False
 counter = 1
 n = len(p) + 64
 do {
 base = H(max(Alice,Bob) | min(Alice,Bob) | password | counter)
 temp = KDF-n(base, "Dragonfly Hunting And Pecking")
 seed = (temp mod (p - 1)) + 1
 temp = seed ^ ((p-1)/q) mod p
 if (temp > 1)
 then
 if (not found)
 PE = temp
 found = true
 fi
 fi
 counter = counter + 1
 } while ((!found) || (counter <= k))

6

Computer Science 161 Fall 2019 Weaver

Remarks…

• Called “Hunting and pecking”:

• Select a (pseudo)-Random element, check if its valid

• If not, repeat

• We need this to resist side-channel attacks

• So we specify a minimum iteration count k

• We select the first one, but we keep at it for a suitable k so the probability of failure is

low enough: but still often 40+ times!

• We can’t precompute this because we include Alice and Bob’s
identity in determining P

• Eliminating this would eliminate the need for online computation of P
• But we can cache P still: an important optimization since this calculation is expensive!

7

Computer Science 161 Fall 2019 Weaver

Now to prove that everybody knows the same P...

And generate a key
• Alice creates two random

values:

• 1 < ra < q (the random value)

• 1 < ma < q (the mask value)

• Alice now computes

• sa = (ra + ma) mod q

• Ea = P-mask

• Sends those to Bob, Bob sends

his counterparts to Alice

• Now the starting secret…

• ss = (PsbEb)ra = (P(rb + mb - mb))ra= Prarb

• Sends those to Bob, Bob sends

his counterparts

• Verify Psb and Sb are valid

• Computes H(ss|Ea|sa|Eb|sb) and

sends that to Bob

• verifies Bob’s counterpart

• Final: 
K = H(ss|Ea * Eb|sa + sb)

8

Computer Science 161 Fall 2019 Weaver

Graphically

9

Alice Bob
Calculate: P

Randoms: 1 < ra < q, 1 < ma < q

sa = (ra + ma) mod q

Ea = P-ma

ss = (PsbEb)ra ss = (PsaEa)rb
H(ss|Ea|sa|Eb|sb) H(ss|Eb|sb|Ea|sa)

K = H(ss|Ea * Eb|sa + sb)
Verify Verify

Calculate: P

Randoms: 1 < rb < q, 1 < mb < q

sb = (rb + mb) mod q

Eb = P-mb

sa , Ea sb , Eb

Computer Science 161 Fall 2019 Weaver

Use in WPA3

• WPA3 does this

• Well, over an elliptic curve instead, but same idea: 

Generate a random generator and use that

• But it is not during the 4-way handshake…

• Instead, it is 2 additional handshakes before the 4-way handshake

• Result is higher latency but, eh, "

• Exists correctness and security proofs

• Result is WPA3:

• Eliminates the off-line brute force attacks

• Eliminates the "adversary with the password" L2 attacks

10

Computer Science 161 Fall 2019 Weaver

Malware: 
Catch-All Term for "Malicious Code"
• Attacker code running on victim computer(s)

• Two parts:

• How it gets there (propagation)

• What it does (payload)

11

Computer Science 161 Fall 2019 Weaver

What Can Malware Payload Do?

• Pretty much anything

• Payload generally decoupled from

how manages to run

• Only subject to permissions under

which it runs

• Examples:

• Brag or exhort or extort (pop up a

message/display)

• Trash files (just to be nasty)

• Launch external activity (spam,
click fraud, DoS; banking)

• Steal information (exfiltrate)

• Keylogging; screen / audio /

camera capture

• Encrypt files (ransomware)

• Cause physical damage

• Possibly delayed until
condition occurs

• “time bomb” / “logic bomb”
12

Computer Science 161 Fall 2019 Weaver

Malware That Automatically Propagates

• Virus = code that propagates (replicates) across systems by arranging to
have itself eventually executed, creating a new additional instance

• Generally infects by altering stored code

• Worm = code that self-propagates/replicates across systems by arranging
to have itself immediately executed (creating new addl. instance)

• Generally infects by altering running code

• No user intervention required

• (Note: line between these isn’t always so crisp; plus some malware
incorporates both approaches)

• Trojan = code that does NOT self propagate, but instead requires a user action

• NO EXPERIMENTATION WITH SELF REPLICATING CODE!
13

Computer Science 161 Fall 2019 Weaver

The Problem of Viruses

• Opportunistic = code will eventually execute

• Generally due to user action

• Running an app, booting their system, opening an attachment

• Separate notions: how it propagates vs.  
what else it does when executed (payload)

• General infection strategy: 
find some code lying around, 
alter it to include the virus

• Have been around for decades …

• … resulting arms race has heavily 

influenced evolution of modern malware
14

Computer Science 161 Fall 2019 Weaver

Propagation

• When virus runs, it looks for an opportunity to infect additional systems

• One approach: look for USB-attached thumb drive, alter any

executables it holds to include the virus

• Strategy: when drive later attached to another system & altered executable runs, it locates

and infects executables on new system’s hard drive

• Or: when user sends email w/ attachment, virus alters attachment to
add a copy of itself

• Works for attachment types that include programmability

• E.g., Word documents (macros)

• Virus can also send out such email proactively, using user’s address book + enticing subject

(“I Love You”)

15

Computer Science 161 Fall 2019 Weaver

16

Original Program Instructions
Entry point

Virus Original Program Instructions
Entry point

1. Entry point

Original Program Instructions

Virus

2. JMP

3. JMP

Original program
instructions can be:
• Application the

user runs
• Run-time library /

routines resident
in memory

• Disk blocks used
to boot OS

• Autorun file on
USB device

• …
Other variants are
possible; whatever
manages to get the
virus code executed

Computer Science 161 Fall 2019 Weaver

Detecting Viruses

• Signature-based detection

• Look for bytes corresponding to injected virus code

• High utility due to replicating nature

• If you capture a virus V on one system, by its nature the virus will be trying to infect many other systems

• Can protect those other systems by installing recognizer for V

• Drove development of multi-billion $$ AV industry 
(AV = “antivirus”)

• So many endemic viruses that detecting well-known ones becomes a “checklist item” for security

audits

• Using signature-based detection also has de facto utility for (glib) marketing

• Companies compete on number of signatures …

• … rather than their quality (harder for customer to assess)

17

Computer Science 161 Fall 2019 Weaver

18

Computer Science 161 Fall 2019 Weaver

Virus Writer / AV Arms Race

• If you are a virus writer and your beautiful new creations don’t
get very far because each time you write one, the AV
companies quickly push out a signature for it ….

• …. What are you going to do?

• Need to keep changing your viruses …

• … or at least changing their appearance!

• How can you mechanize the creation of new instances of
your viruses …

• … so that whenever your virus propagates, what it injects as a copy of itself

looks different?
19

Computer Science 161 Fall 2019 Weaver

Polymorphic Code

• We’ve already seen technology for creating a representation of data
apparently completely unrelated to the original: encryption!

• Idea: every time your virus propagates, it inserts a newly
encrypted copy of itself

• Clearly, encryption needs to vary

• Either by using a different key each time

• Or by including some random initial padding (like an IV)

• Note: weak (but simple/fast) crypto algorithm works fine

• No need for truly strong encryption, just obfuscation

• When injected code runs, it decrypts itself to obtain the original
functionality

20

Computer Science 161 Fall 2019 Weaver

21

Virus Original Program Instructions

D
ecryptor

Main Virus Code

Key

D
ecryptor

Encrypted Glob of Bits

Key

Original Program Instructions

}

Jmp

Instead of this …

Virus has this
initial structure

When executed,
decryptor applies key
to decrypt the glob …

⇓

… and jumps to the
decrypted code once
stored in memory

Computer Science 161 Fall 2019 Weaver

D
ecryptor

Main Virus Code

Key

D
ecryptor

Encrypted Glob of Bits

Key

Jmp

⇓

Once running, virus
uses an encryptor with
a new key to propagate

Encryptor
}

D
ecryptor

Different Encrypted Glob of Bits

Key2

⇓

Polymorphic Propagation

22

New virus instance
bears little resemblance
to original

Computer Science 161 Fall 2019 Weaver

Arms Race: Polymorphic Code

• Given polymorphism, how might we then detect viruses?

• Idea #1: use narrow sig. that targets decryptor

• Issues?

• Less code to match against ⇒ more false positives

• Virus writer spreads decryptor across existing code

• Idea #2: execute (or statically analyze) suspect code to see if it decrypts!

• Issues?

• Legitimate “packers” perform similar operations (decompression)

• How long do you let the new code execute?

• If decryptor only acts after lengthy legit execution, difficult to spot

• Virus-writer countermeasures?

23

Computer Science 161 Fall 2019 Weaver

Metamorphic Code

• Idea: every time the virus propagates, generate semantically different
version of it!

• Different semantics only at immediate level of execution; higher-level semantics remain same

• How could you do this?

• Include with the virus a code rewriter:

• Inspects its own code, generates random variant, e.g.:

• Renumber registers

• Change order of conditional code

• Reorder operations not dependent on one another

• Replace one low-level algorithm with another

• Remove some do-nothing padding and replace with different do-nothing padding (“chaff”)

• Can be very complex, legit code … if it’s never called!

24

Computer Science 161 Fall 2019 Weaver

When ready to propagate,
virus invokes a randomized
rewriter to construct new but
semantically equivalent code
(including the rewriter)

}

!

Metamorphic Propagation

25

Main Virus Code

R
ew

riter
}

!

(Main Virus Code)'
R

ew
riter'

(Main Virus Code)''

R
ew

riter''

Computer Science 161 Fall 2019 Weaver

Detecting Metamorphic Viruses?

• Need to analyze execution behavior

• Shift from syntax (appearance of instructions) to  

semantics (effect of instructions)

• Two stages: (1) AV company analyzes new virus to find behavioral signature; 
(2) AV software on end systems analyze suspect code to test for match to signature

• What countermeasures will the virus writer take?

• Delay analysis by taking a long time to manifest behavior

• Long time = await particular condition, or even simply clock time

• Detect that execution occurs in an analyzed environment and if so behave differently

• E.g., test whether running inside a debugger, or in a Virtual Machine

• Counter-countermeasure?

• AV analysis looks for these tactics and skips over them

• Note: attacker has edge as AV products supply an oracle
26

Computer Science 161 Fall 2019 Weaver

Malcode Wars and the Halting Problem...

• Cyberwars are not won by solving the halting problem... 
Cyberwars are won by making some other poor sod solve the halting
problem!!!

• In the limit, it is undecidable to know "is this code bad?"

• Modern focus is instead "is this code new?"

• Use a secure cryptographic hash (so sha-256 not md5)

• Check hash with central repository:  

If not seen before, treat binary as inherently more suspicious

• Creates a bind for attackers:

• Don't make your code *morphic:  

Known bad signature detectors find it

• Make your code *morphic:  

It always appears as new and therefore inherently suspicious
27

Computer Science 161 Fall 2019 Weaver

Creating binds is very powerful...

• You have a detector D for some bad behavior...

• So bad-guys come up with a way of avoiding the detector D

• So come up with a detection strategy for avoiding
detector D

• So to avoid this detector, the attacker must not try to avoid D

• When you can do it, it is very powerful!

28

Computer Science 161 Fall 2019 Weaver

How Much Malware Is Out There?

• A final consideration re polymorphism and metamorphism:

• Presence can lead to mis-counting a single virus outbreak as instead

reflecting 1,000s of seemingly different viruses

• Thus take care in interpreting vendor statistics on malcode
varieties

• (Also note: public perception that huge malware populations exist is in the
vendors’ own interest)

29

Computer Science 161 Fall 2019 Weaver

30

Computer Science 161 Fall 2019 Weaver

Infection Cleanup

• Once malware detected on a system, how do we get rid of it?

• May require restoring/repairing many files

• This is part of what AV companies sell: per-specimen disinfection procedures

• What about if malware executed with adminstrator privileges?

• "Game over man, Game Over!"

• “Dust off and nuke the entire site from orbit. It’s the only way to be sure”

• i.e., rebuild system from original media + data backups

• Malware may include a rootkit: kernel patches to hide its
presence (its existence on disk, processes)

31

- Aliens

Computer Science 161 Fall 2019 Weaver

Infection Cleanup, con’t

• If we have complete source code for system, we could
rebuild from that instead, couldn’t we?

• No!

• Suppose forensic analysis shows that virus introduced a

backdoor in /bin/login executable

• (Note: this threat isn’t specific to viruses; applies to any malware)

• Cleanup procedure: rebuild /bin/login from source …

32

Computer Science 161 Fall 2019 Weaver

33

/bin/login 
source code

Compiler

/bin/login 
executable

Regular compilation
process of building login
binary from source code

/bin/login 
source code

Compiler

/bin/login 
executable

Infected compiler
recognizes when it’s
compiling /bin/login
source and inserts extra
back door when seen

Computer Science 161 Fall 2019 Weaver

34

No problem: first step,
rebuild the compiler so
it’s uninfected

Correct compiler 
source code

 Infected Compiler

Correct compiler 
executable

Reflections on Trusting Trust
Turing-Award Lecture, Ken Thompson, 1983

No amount of careful source-code
scrutiny can prevent this problem.
And if the hardware has a back door …

 Infected Compiler

 Infected Compiler

Oops - infected compiler
recognizes when it’s
compiling its own source
and inserts the infection!

Correct compiler 
source code

X

Computer Science 161 Fall 2019 Weaver

More On "Rootkits"

• If you control the operating system...

• You can hide extremely well

• EG, your malcode is on disk...

• So it will persist across reboots

• But if you try to read the disk...

• The operating system just says "Uhh, this doesn't exist!"

35

Computer Science 161 Fall 2019 Weaver

Even More Places To 
Hide!
• In the BIOS/EFI Firmware!

• So you corrupt the BIOS which corrupts the OS...

• Really hard to find: 

Defense, only run cryptographically signed BIOS code as part of the Trusted
Base

• In the disk controller firmware!

• So the master boot record, when read on boot up corrupts the OS...

• But when you try to read the MBR later... It is just "normal"

• Again, defense is signed code: The Firmware will only load a signed operating

system

• Make sure the disk itself is not trusted!

36

Computer Science 161 Fall 2019 Weaver

Robust Rootkit Detection: 
Detect the act of hiding...
• Do an "in-system" scan of the disk...

• Record it to a USB drive

• Reboot the system with trusted media

• So a known good operating system

• Do the same scan!

• If the scans are different, you found the rootkit!

• For windows, you can also do a "high/low scan" on the Registry:

• Forces the bad guy to understand the registry as well as Mark Russinovich (the guy behind Sysinternals

who's company Microsoft bought because he understood the Registry better than Microsoft's own
employees!)

• Forces a bind on the attacker:

• Hide and persist? You can be detected

• Hide but don't persist? You can't survive reboots!

37

Computer Science 161 Fall 2019 Weaver

Which Means Proper Malcode Cleanup...

38

