Weaver Co 161 P 3
Fall 2019 Computer Security roject

Due: December 4th, 2019, 11:59PM

Last updated: November 16th, 2019

Your goal for this project is to find vulnerabilities in Snapitterbook, an up-and-coming social
network. The website will be running locally on your machine, and you will also have access
to its source code. You will need to use your knowledge of web security concepts to find the
security bugs in Snapitterbook, exploit them, document your findings as well as how to fix
the issues.

Setup

Start by downloading the source code: https://cs161.org/assets/projects/3/project3.
zip. You will need the following software:

1. Python 3. (Python 2 is not supported for this project.)
2. Python pip for Python 3
3. Either Firefox or Google Chrome

After you have installed the necessary software and extracted the source code, open a termi-
nal and enter the Project 3 folder. If you are on Linux, macOS or Git Bash, run begin.sh.
If you are on Windows, run begin.bat. If everything runs successfully, you should see
something like this:

* Serving Flask app "server"
* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

Now open your web browser and navigate to http://127.0.0.1:5000/. If all goes well, you
should see the home screen of “Snapitterbook”. If you are unable to get this working, the
instructional machines have all the necessary software.

Getting In (4 points)

Unfortunately, nobody has been able to get a Snapitterbook account, it’s way too exclusive!
We’re hoping to get access some other way. Can you figure out a valid username and
password, so that we can do some other attacks? (Hint: look at the HTML source code
for Snapitterbook. You should be able to do this by right-clicking and selecting “Inspect
Element”.) This problem is marked on Gradescope as test_zero.

Page 1 of 4


https://cs161.org/assets/projects/3/project3.zip
https://cs161.org/assets/projects/3/project3.zip
https://pip.pypa.io/en/stable/
http://127.0.0.1:5000/

Getting Through (50 points)

Now that you have a foothold in the system, it’s time to find vulnerabilities. There are six
more vulnerabilities contained on the Snapitterbook website. Find and exploit all of them.
Use the instructions from “Showing Your Exploits” to create HAR files, and submit them
to the autograder. Note that even though you have access to the source code locally, your
exploits should not rely on this fact! In particular, do not assume that you know the
contents of the database as initialized in database.py.

Of course, this portion of the project is extremely open-ended! Finding vulnerabilities can be
very frustrating. Sometimes you think something should work and it does not. Sometimes
you think something definitely should not work and it ends up working.

Here are some tips for finding vulnerabilities:

You have access to a local copy of the application! Use that to your advantage. Look
at error logs. Read the source code. Try to understand where possible vulnerabilities
may occur, and begin your search there.

Learn how to use browser developer tools:
https://developer.mozilla.org/en-US/docs/Tools
https://developers.google.com/web/tools/chrome-devtools/

Review the relevant lecture slides. There is little hope in finding the vulnerabilities if
you do not know they exist.

By far the best resource is the OWASP Testing Guide. It is also extremely com-
prehensive and lengthy. To start your search, you should probably begin with the
vulnerabilities we have discussed in class.

You do not actually need to do anything special, just show the exploit is possible. For
example, it is enough display a Javascript alert with a test message to prove XSS.

Play around with the application a lot. Try invalid and malformed inputs. Have your
pet cat run on the keyboard.

We have not discussed every vulnerability in class. You will have to do some of your
own outside research.

Remember that there is a difference between a vulnerability and an ezploit: a vulnera-
bility is an entry point in the code (via an unchecked input / output) that allows you
to run an exploit. Two exploits that use the same vulnerability will not count
as two separate vulnerabilities for this project. For example, if you submit user
input to the same text box that results in both an XSS and a SQL injection, it will
only count as one vulnerability (i.e. the text box doesn’t sanitize SQL / JS input).

Project 3 Page 2 of 4 CS 161 — Fall 2019


https://developer.mozilla.org/en-US/docs/Tools
https://developers.google.com/web/tools/chrome-devtools/
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents

Showing Your Exploits

To prove that you’ve successfully exploited Snapitterbook, you will submit HTTP archive
(HAR) files to a Gradescope autograder. A HAR file contains a log of all the HTTP requests
between you and the webserver. The autograder analyzes this log to check if you have
successfully found an exploit.

For example, to show that you have successfully completed “Getting In,” you’ll need to
submit a HAR file that shows you logging in with a valid username and password.

Let’s say that you have found an exploit. We will discuss now how to document it. Follow
these steps:

1. Restart the server. Kill the old server by going to the terminal which has it and
pressing Control-C. Rerun begin.sh or begin.bat as described above. Then reopen
Snapitterbook in your browser.

2. Firefox: Right-click the webpage and click “Inspect Element.” Click the “Network”
tab. Check the “Persist Logs” and “Disable cache” checkboxes. Click the “Clear”
button on the top-left (it looks like a garbage can).

3. Chrome: Right-click the webpage and click “Inspect”. Click the “Network” tab. Check
the “Persist Logs” and “Disable cache” checkboxes. Click the “Clear” button on the
top-left (it looks like a circle with a backslash through it). Select “Use Small Request
Rows” for “View”.

4. Perform your exploit. This should include any setup that is needed for the exploit. If
applicable, it should include a URL access which shows how the exploit could impact
another user.

5. Return to the Developer Tools tab. Right-click any of the requests. Click “Save All
As HAR” (Firefox) or “Save as HAR with Content” (Chrome).

6. To submit, ZIP all of your HAR files up and upload it to Gradescope under the
“Project 3 Autograder” submission.

Your grade on the autograder completely determines your grade for this part; there are no
hidden tests. If the autograder does not give you credit for an exploit which you believe
is correct, please make a private post on Piazza. Include the URL of your Gradescope
submission, and the HAR file that you believe you should be getting credit for.

Help, Snapitterl)ook is Broken and It Can’t Get Up

After performing some of these exploits, you might end up with a Snapitterbook which is
beyond repair. If this happens, you just need to restart the server.

Go back to the terminal where the Flask server is running, and press Control-C. Then, rerun
begin.sh or begin.bat as appropriate depending on your operating system.

Project 3 Page 3 of 4 CS 161 — Fall 2019



Moving On (46 points total)

The next part of this project is a post-mortem of your prior exploits, along with a further
analysis. Answer the following questions. Submit your answers as a PDF to the Gradescope
assignment “Project 3 Writeup.”

Weaponize Vulnera]oﬂity (10 points)

Weaponize one of your exploits (or a combination of them). Explain in detail an exploit
which allows the attacker to create a post which appears to be from the user dirks. Your
weaponized exploit should work with minimal user interaction: do not assume that dirks
will load any URL you give him. dirks will visit his own wall and profile, but he will not
interact with them.

Vulneraloility Writeup (21 points)

Look back over the following vulnerabilities you found while attacking Snapitterbook:
o Test 1
e Test 5
o Test 6
For each of these, please explain in detail:
e How the vulnerability works
e The line of code where the vulnerability works

e The impact an attacker can achieve (on the site, other users, etc.) by exploiting this
vulnerability

e How to fix this vulnerability in this server (if applicable, feel free to provide source

code)

e How to avoid this vulnerability in general (techniques, tools, etc.)

Other ssues (15 points)

In addition to the autograded vulnerabilities above, there are several other issues with Snapit-
terbook. It may help to take a look at the Python code itself to discover these issues (namely
server.py and auth_helper.py). Explain each issue, and propose a fix for each. You need
not give code for this part, a high-level overview is OK. For full credit, you will need to
identify three issues. Submit no more than five issues.

Project 3 Page 4 of 4 CS 161 — Fall 2019



