
Weaver
Fall 2019

CS 161
Computer Security Discussion 2

Software Security
Question 1 Software Vulnerabilities (25 min)

For the following code, assume an attacker can control the value of basket passed into
eval_basket. The value of n is constrained to correctly re�ect the number of elements
in basket.

The code includes several security vulnerabilities. Circle three such vulnerabilities
in the code and brie�y explain each of the three on the next page.

1 struct food {
2 char name [1 0 2 4] ;
3 int c a l o r i e s ;
4 } ;
5
6 /∗ Evaluate a shopping baske t wi th at most 32 food items .
7 Returns the number o f low - c a l o r i e items , or −1 on a problem . ∗/
8 int eval_basket (struct food basket [] , s i z e_t n) {
9 struct food good [3 2] ;

10 char bad [1 0 2 4] , cmd [1 0 2 4] ;
11 int i , t o t a l = 0 , ngood = 0 , size_bad = 0 ;
12
13 i f (n > 32) return - 1 ;
14
15 for (i = 0 ; i <= n ; ++i) {
16 i f (basket [i] . c a l o r i e s < 100)
17 good [ngood++] = basket [i] ;
18 else i f (basket [i] . c a l o r i e s > 500) {
19 s i ze_t l en = s t r l e n (basket [i] . name) ;
20 s np r i n t f (bad + size_bad , len , "%s " , basket [i] . name) ;
21 size_bad += len ;
22 }
23
24 t o t a l += basket [i] . c a l o r i e s ;
25 }
26
27 i f (t o t a l > 2500) {
28 const char ∗ fmt = " hea l th - f a c t o r - - c a l o r i e s %d - - bad - items %s" ;
29 f p r i n t f (s tde r r , " l o t s o f c a l o r i e s ! ") ;
30 s np r i n t f (cmd , s izeof cmd , fmt , t o ta l , bad) ;
31 system (cmd) ;
32 }
33
34 return ngood ;
35 }

Reminders:

• snprintf(buf, len, fmt, . . .) works like printf, but instead writes to buf, and
won't write more than len - 1 characters. It terminates the characters written with
a `\0'.

• system runs the shell command given by its �rst argument.

Page 1 of 4

1. Explanation:

2. Explanation:

3. Explanation:

Discussion 2 Page 2 of 4 CS 161 � Fall 2019

Question 2 C Memory Defenses (10 min)
Mark the following statements as True or False and justify your solution. Please feel free
to discuss with students around you.

1. Stack canaries cannot protect against all bu�er over�ow attacks in the stack.

2. A format-string vulnerability can allow an attacker to overwrite a saved return
address even when stack canaries are enabled.

3. If you have data execution prevention/executable space protection/NX bit, an at-
tacker can write code into memory to execute.

4. If you have a non-executable stack and heap, bu�er over�ows are no longer ex-
ploitable.

5. If you have a non-executable stack and heap, an attacker can use Return Oriented
Programming.

6. If you use a memory-safe language, bu�er over�ow attacks are impossible.

7. ASLR, stack canaries, and NX bits all combined are insu�cient to prevent exploita-
tion of all bu�er over�ow attacks.

Short answer!

1. What vulnerability would arise if the canary was above the return address?

2. What vulnerability would arise if the stack canary was between the return address
and the saved frame pointer?

Discussion 2 Page 3 of 4 CS 161 � Fall 2019

Question 3 TCB (Trusted Computing Base) (10 min)
In lecture, we discussed the importance of a TCB and the thought that goes into de-
signing it. Answer these following questions about the TCB:

1. What is a TCB?

2. What can we do to reduce the size of the TCB?

3. What components are included in the (physical analog of) TCB for the following
security goals:

(a) Preventing break-ins to your apartment

(b) Locking up your bike

(c) Preventing people from riding BART for free

(d) Making sure no explosives are present on an airplane

Discussion 2 Page 4 of 4 CS 161 � Fall 2019

